BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35171157)

  • 1. Construction of a colorimetric sensor array based on the coupling reaction to identify phenols.
    Zhong H; Xue Y; Liu B; Chen Z; Li K; Zuo X
    Anal Methods; 2022 Mar; 14(9):892-899. PubMed ID: 35171157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction-based colorimetric signaling of Cu(2+) ions by oxidative coupling of phenols with 4-aminoantipyrine.
    Kim HY; Lee HJ; Chang SK
    Talanta; 2015 Jan; 132():625-9. PubMed ID: 25476354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colorimetric sensing strategy for detection of cysteine, phenol cysteine, and phenol based on synergistic doping of multiple heteroatomsĀ into sponge-like Fe/NPC nanozymes.
    Xue Y; Zhong H; Liu B; Zhao R; Ma J; Chen Z; Li K; Zuo X
    Anal Bioanal Chem; 2022 Jun; 414(14):4217-4225. PubMed ID: 35462599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual Sensor Arrays for Distinction of Phenolic Acids Based on Two Single-Atom Nanozymes.
    Huang J; Gu H; Wang G; Wu R; Sun M; Chen Z
    Anal Chem; 2023 Jun; 95(23):9107-9115. PubMed ID: 37257081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Buffer species-dependent catalytic activity of Cu-Adenine as a laccase mimic for constructing sensor array to identify multiple phenols.
    Tian S; Zhang C; Yu M; Li Y; Fan L; Li X
    Anal Chim Acta; 2022 Apr; 1204():339725. PubMed ID: 35397911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antioxidant identification using a colorimetric sensor array based on Co-N-C nanozyme.
    Liu B; Xue Y; Gao Z; Tang K; Wang G; Chen Z; Zuo X
    Colloids Surf B Biointerfaces; 2021 Dec; 208():112060. PubMed ID: 34450512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A three-dimensional network structure of metal-based nanozymes for the construction of colorimetric sensors for the detection of antioxidants.
    Qin S; Liu B; Xue Y; Zhao R; Wang G; Li K; Zheng L; Wang P; Tang T; Yang Y; Chen Z; Zuo X
    Anal Methods; 2024 Apr; 16(15):2292-2300. PubMed ID: 38526022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cu
    Hu CY; Jiang ZW; Huang CZ; Li YF
    Mikrochim Acta; 2021 Jul; 188(8):272. PubMed ID: 34302224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colorimetric sensor array based on Au
    Wu F; Wang H; Lv J; Shi X; Wu L; Niu X
    Biosens Bioelectron; 2023 Sep; 236():115417. PubMed ID: 37244084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colorimetric sensor array for discriminating and determinating phenolic pollutants basing on different ratio of ligands in Cu/MOFs.
    Zhu J; Jiang H; Wang W
    J Hazard Mater; 2023 Oct; 460():132418. PubMed ID: 37647664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comments on the uricase/peroxidase--phenol--4--aminoantipyrine reaction.
    Pachla LA; Reynolds DL; Wright DS
    Clin Chem; 1986 Jan; 32(1 Pt 1):233-4. PubMed ID: 3000645
    [No Abstract]   [Full Text] [Related]  

  • 12. Smartphone-assisted nanozyme sensor array constructed based on reaction kinetics for the discrimination and identification of phenolic compounds.
    Jing W; Shi Q; Zheng M; Yang Y; Qiang S; Jia Z; Zhu T; Zhao Y; Qu Y; Lu F; Liu F; Dai Y
    Anal Chim Acta; 2024 Jan; 1287():342133. PubMed ID: 38182397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole-cell method for phenol detection based on the color reaction of phenol with 4-aminoantipyrine catalyzed by CotA laccase on endospore surfaces.
    Zeng Z; Tian L; Li Z; Jia L; Zhang X; Xia M; Hu Y
    Biosens Bioelectron; 2015 Jul; 69():162-6. PubMed ID: 25725465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinel-Oxide-Based Laccase Mimics for the Identification and Differentiation of Phenolic Pollutants.
    Wang Q; Wang X; Wei H
    Anal Chem; 2022 Jul; 94(28):10198-10205. PubMed ID: 35786854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen and copper-doped carbon quantum dots with intrinsic peroxidase-like activity for double-signal detection of phenol.
    Du J; Qi S; Fan T; Yang Y; Wang C; Shu Q; Zhuo S; Zhu C
    Analyst; 2021 Jun; 146(13):4280-4289. PubMed ID: 34105526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved 4-aminoantipyrine colorimetry for detection of residual hydrogen peroxide in noodles, fish paste, dried fish, and herring roe.
    Ito Y; Tonogai Y; Suzuki H; Ogawa S; Yokoyama T; Hashizume T; Santo H; Tanaka KI; Nishigaki K; Iwaida M
    J Assoc Off Anal Chem; 1981 Nov; 64(6):1448-52. PubMed ID: 7309666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic-Tongue Colorimetric-Sensor Array for Discrimination and Quantitation of Metal Ions Based on Gold-Nanoparticle Aggregation.
    Li X; Li S; Liu Q; Chen Z
    Anal Chem; 2019 May; 91(9):6315-6320. PubMed ID: 30973003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colorimetric identification of multiple terpenoids based on bimetallic FeCu/NPCs nanozymes.
    Xue Y; Zhong H; Liu B; Qin S; Chen Z; Li K; Zheng L; Zuo X
    Anal Biochem; 2023 Jul; 672():115160. PubMed ID: 37105389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zr(IV)-based metal-organic framework nanocomposites with enhanced peroxidase-like activity as a colorimetric sensing platform for sensitive detection of hydrogen peroxide and phenol.
    Wang J; Zhou Y; Zeng M; Zhao Y; Zuo X; Meng F; Lv F; Lu Y
    Environ Res; 2022 Jan; 203():111818. PubMed ID: 34363805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A colorimetric supramolecular sensor array based on charge-transfer complexes for multiplex aniline and phenolic pollutants detection.
    Huang SZ; Tang Q; Wei KN; Yang RP; Tao Z; Huang Y; Xiao X
    Anal Chim Acta; 2022 Nov; 1233():340504. PubMed ID: 36283783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.