These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35171169)

  • 1. Explorations of the nonheme high-valent iron-oxo landscape: crystal structure of a synthetic complex with an [FeIV2(μ-O)
    Rohde GT; Xue G; Que L
    Faraday Discuss; 2022 May; 234(0):109-128. PubMed ID: 35171169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A synthetic precedent for the [FeIV2(mu-O)2] diamond core proposed for methane monooxygenase intermediate Q.
    Xue G; Wang D; De Hont R; Fiedler AT; Shan X; Münck E; Que L
    Proc Natl Acad Sci U S A; 2007 Dec; 104(52):20713-8. PubMed ID: 18093922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sc
    Banerjee S; Draksharapu A; Crossland PM; Fan R; Guo Y; Swart M; Que L
    J Am Chem Soc; 2020 Mar; 142(9):4285-4297. PubMed ID: 32017545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Fe2IVO2 diamond core structure for the key intermediate Q of methane monooxygenase.
    Shu L; Nesheim JC; Kauffmann K; Münck E; Lipscomb JD; Que L
    Science; 1997 Jan; 275(5299):515-8. PubMed ID: 8999792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dioxygen activation in soluble methane monooxygenase.
    Tinberg CE; Lippard SJ
    Acc Chem Res; 2011 Apr; 44(4):280-8. PubMed ID: 21391602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic Properties of a Biologically Relevant [Fe
    Kass D; Yao S; Krause KB; Corona T; Richter L; Braun T; Mebs S; Haumann M; Dau H; Lohmiller T; Limberg C; Drieß M; Ray K
    Angew Chem Int Ed Engl; 2023 Mar; 62(10):e202209437. PubMed ID: 36541062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic mononuclear nonheme iron-oxygen intermediates.
    Nam W
    Acc Chem Res; 2015 Aug; 48(8):2415-23. PubMed ID: 26203519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate-triggered activation of a synthetic [Fe2(μ-O)2] diamond core for C-H bond cleavage.
    Xue G; Pokutsa A; Que L
    J Am Chem Soc; 2011 Oct; 133(41):16657-67. PubMed ID: 21899336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the key species in the enzymatic oxidation of methane to methanol.
    Banerjee R; Proshlyakov Y; Lipscomb JD; Proshlyakov DA
    Nature; 2015 Feb; 518(7539):431-4. PubMed ID: 25607364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of a μ-1,2-hydroperoxo Fe
    Walleck S; Zimmermann TP; Hachmeister H; Pilger C; Huser T; Katz S; Hildebrandt P; Stammler A; Bögge H; Bill E; Glaser T
    Nat Commun; 2022 Mar; 13(1):1376. PubMed ID: 35296656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Reactive Co
    Li Y; Handunneththige S; Farquhar ER; Guo Y; Talipov MR; Li F; Wang D
    J Am Chem Soc; 2019 Dec; 141(51):20127-20136. PubMed ID: 31794198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic analogue of the [Fe(2)(mu-OH)(2)(mu-O(2)CR)](3+) core of soluble methane monooxygenase hydroxylase via synthesis and dioxygen reactivity of carboxylate-bridged diiron(II) complexes.
    Lee D; Lippard SJ
    Inorg Chem; 2002 Feb; 41(4):827-37. PubMed ID: 11849083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mössbauer and DFT study of the ferromagnetically coupled diiron(IV) precursor to a complex with an Fe(IV)(2)O(2) diamond core.
    Martinho M; Xue G; Fiedler AT; Que L; Bominaar EL; Münck E
    J Am Chem Soc; 2009 Apr; 131(16):5823-30. PubMed ID: 19338307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ce
    Draksharapu A; Xu S; Que L
    Angew Chem Int Ed Engl; 2020 Dec; 59(50):22484-22488. PubMed ID: 32902902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. μ-Nitrido Diiron Macrocyclic Platform: Particular Structure for Particular Catalysis.
    Afanasiev P; Sorokin AB
    Acc Chem Res; 2016 Apr; 49(4):583-93. PubMed ID: 26967682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic and computational studies of (mu-oxo)(mu-1,2-peroxo)diiron(III) complexes of relevance to nonheme diiron oxygenase intermediates.
    Fiedler AT; Shan X; Mehn MP; Kaizer J; Torelli S; Frisch JR; Kodera M; Que L
    J Phys Chem A; 2008 Dec; 112(50):13037-44. PubMed ID: 18811130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protonation of a peroxodiiron(III) complex and conversion to a diiron(III/IV) intermediate: implications for proton-assisted O-O bond cleavage in nonheme diiron enzymes.
    Cranswick MA; Meier KK; Shan X; Stubna A; Kaizer J; Mehn MP; Münck E; Que L
    Inorg Chem; 2012 Oct; 51(19):10417-26. PubMed ID: 22971084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opening the Co
    Li Y; Handunneththige S; Xiong J; Guo Y; Talipov MR; Wang D
    J Am Chem Soc; 2020 Dec; 142(52):21670-21678. PubMed ID: 33325694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DFT study of the mechanism for methane hydroxylation by soluble methane monooxygenase (sMMO): effects of oxidation state, spin state, and coordination number.
    Huang SP; Shiota Y; Yoshizawa K
    Dalton Trans; 2013 Jan; 42(4):1011-23. PubMed ID: 23108153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct and remote control of electronic structures and redox potentials in μ-oxo diferric complexes.
    Finke S; Stammler A; Oldengott J; Walleck S; Glaser T
    Dalton Trans; 2023 Nov; 52(46):17548-17561. PubMed ID: 37962521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.