These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 35171169)
21. DFT study of the mechanism for methane hydroxylation by soluble methane monooxygenase (sMMO): effects of oxidation state, spin state, and coordination number. Huang SP; Shiota Y; Yoshizawa K Dalton Trans; 2013 Jan; 42(4):1011-23. PubMed ID: 23108153 [TBL] [Abstract][Full Text] [Related]
22. Direct and remote control of electronic structures and redox potentials in μ-oxo diferric complexes. Finke S; Stammler A; Oldengott J; Walleck S; Glaser T Dalton Trans; 2023 Nov; 52(46):17548-17561. PubMed ID: 37962521 [TBL] [Abstract][Full Text] [Related]
23. Geometry of the soluble methane monooxygenase catalytic diiron center in two oxidation states. Rosenzweig AC; Nordlund P; Takahara PM; Frederick CA; Lippard SJ Chem Biol; 1995 Sep; 2(9):409-18. PubMed ID: 9432288 [TBL] [Abstract][Full Text] [Related]
24. Geometry of the soluble methane monooxygenase catalytic diiron center in two oxidation states. Rosenzweig AC; Nordlund P; Takahara PM; Frederick CA; Lippard SJ Chem Biol; 1995 Jun; 2(6):409-18. PubMed ID: 9383443 [TBL] [Abstract][Full Text] [Related]
25. Evaluating the identity and diiron core transformations of a (μ-oxo)diiron(III) complex supported by electron-rich tris(pyridyl-2-methyl)amine ligands. Do LH; Xue G; Que L; Lippard SJ Inorg Chem; 2012 Feb; 51(4):2393-402. PubMed ID: 22264120 [TBL] [Abstract][Full Text] [Related]
26. Unprecedented (μ-1,1-Peroxo)diferric Structure for the Ambiphilic Orange Peroxo Intermediate of the Nonheme N-Oxygenase CmlI. Jasniewski AJ; Komor AJ; Lipscomb JD; Que L J Am Chem Soc; 2017 Aug; 139(30):10472-10485. PubMed ID: 28673082 [TBL] [Abstract][Full Text] [Related]
27. Tuning reactivity and mechanism in oxidation reactions by mononuclear nonheme iron(IV)-oxo complexes. Nam W; Lee YM; Fukuzumi S Acc Chem Res; 2014 Apr; 47(4):1146-54. PubMed ID: 24524675 [TBL] [Abstract][Full Text] [Related]
28. Dioxygen Activation by Nonheme Diiron Enzymes: Diverse Dioxygen Adducts, High-Valent Intermediates, and Related Model Complexes. Jasniewski AJ; Que L Chem Rev; 2018 Mar; 118(5):2554-2592. PubMed ID: 29400961 [TBL] [Abstract][Full Text] [Related]
29. Nonheme Diiron Oxygenase Mimic That Generates a Diferric-Peroxo Intermediate Capable of Catalytic Olefin Epoxidation and Alkane Hydroxylation Including Cyclohexane. Oloo WN; Szávuly M; Kaizer J; Que L Inorg Chem; 2022 Jan; 61(1):37-41. PubMed ID: 34894683 [TBL] [Abstract][Full Text] [Related]
30. Two-step concerted mechanism for methane hydroxylation on the diiron active site of soluble methane monooxygenase. Yoshizawa K J Inorg Biochem; 2000 Jan; 78(1):23-34. PubMed ID: 10714702 [TBL] [Abstract][Full Text] [Related]
31. Modeling the syn disposition of nitrogen donors in non-heme diiron enzymes. Synthesis, characterization, and hydrogen peroxide reactivity of diiron(III) complexes with the syn N-donor ligand H2BPG2DEV. Friedle S; Kodanko JJ; Morys AJ; Hayashi T; Moënne-Loccoz P; Lippard SJ J Am Chem Soc; 2009 Oct; 131(40):14508-20. PubMed ID: 19757795 [TBL] [Abstract][Full Text] [Related]
32. X-ray absorption spectroscopic characterization of the diferric-peroxo intermediate of human deoxyhypusine hydroxylase in the presence of its substrate eIF5a. Jasniewski AJ; Engstrom LM; Vu VV; Park MH; Que L J Biol Inorg Chem; 2016 Sep; 21(5-6):605-18. PubMed ID: 27380180 [TBL] [Abstract][Full Text] [Related]
33. Bis(mu-oxo)dimetal "diamond" cores in copper and iron complexes relevant to biocatalysis. Que L; Tolman WB Angew Chem Int Ed Engl; 2002 Apr; 41(7):1114-37. PubMed ID: 12491240 [TBL] [Abstract][Full Text] [Related]
34. A diiron(IV) complex that cleaves strong C-H and O-H bonds. Wang D; Farquhar ER; Stubna A; Münck E; Que L Nat Chem; 2009 May; 1(2):145-50. PubMed ID: 19885382 [TBL] [Abstract][Full Text] [Related]
35. High-Resolution XFEL Structure of the Soluble Methane Monooxygenase Hydroxylase Complex with its Regulatory Component at Ambient Temperature in Two Oxidation States. Srinivas V; Banerjee R; Lebrette H; Jones JC; Aurelius O; Kim IS; Pham CC; Gul S; Sutherlin KD; Bhowmick A; John J; Bozkurt E; Fransson T; Aller P; Butryn A; Bogacz I; Simon P; Keable S; Britz A; Tono K; Kim KS; Park SY; Lee SJ; Park J; Alonso-Mori R; Fuller FD; Batyuk A; Brewster AS; Bergmann U; Sauter NK; Orville AM; Yachandra VK; Yano J; Lipscomb JD; Kern J; Högbom M J Am Chem Soc; 2020 Aug; 142(33):14249-14266. PubMed ID: 32683863 [TBL] [Abstract][Full Text] [Related]
36. Stereospecific alkane hydroxylation by non-heme iron catalysts: mechanistic evidence for an Fe(V)=O active species. Chen K; Que L J Am Chem Soc; 2001 Jul; 123(26):6327-37. PubMed ID: 11427057 [TBL] [Abstract][Full Text] [Related]
37. Nuclear Resonance Vibrational Spectroscopic Definition of the Fe(IV) Jacobs AB; Banerjee R; Deweese DE; Braun A; Babicz JT; Gee LB; Sutherlin KD; Böttger LH; Yoda Y; Saito M; Kitao S; Kobayashi Y; Seto M; Tamasaku K; Lipscomb JD; Park K; Solomon EI J Am Chem Soc; 2021 Oct; 143(39):16007-16029. PubMed ID: 34570980 [TBL] [Abstract][Full Text] [Related]
38. Isolation and characterization of a dihydroxo-bridged iron(III,III)(μ-OH)2 diamond core derived from dioxygen. Coggins MK; Toledo S; Kovacs JA Inorg Chem; 2013 Dec; 52(23):13325-31. PubMed ID: 24229319 [TBL] [Abstract][Full Text] [Related]
39. Bioinspired Nonheme Iron Catalysts for C-H and C═C Bond Oxidation: Insights into the Nature of the Metal-Based Oxidants. Oloo WN; Que L Acc Chem Res; 2015 Sep; 48(9):2612-21. PubMed ID: 26280131 [TBL] [Abstract][Full Text] [Related]
40. Properties and reactivity of μ-nitrido-bridged dimetal porphyrinoid complexes: how does ruthenium compare to iron? Mubarak MQE; Sorokin AB; de Visser SP J Biol Inorg Chem; 2019 Oct; 24(7):1127-1134. PubMed ID: 31560098 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]