These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35171239)

  • 1. A Musculoskeletal Multibody Algorithm Based on a Novel Rheonomic Constraints Definition Applied to the Lower Limb.
    Ruggiero A; Sicilia A
    J Biomech Eng; 2022 Aug; 144(8):. PubMed ID: 35171239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematic models of lower limb joints for musculo-skeletal modelling and optimization in gait analysis.
    Leardini A; Belvedere C; Nardini F; Sancisi N; Conconi M; Parenti-Castelli V
    J Biomech; 2017 Sep; 62():77-86. PubMed ID: 28601242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a multibody kinematics optimization method for three-dimensional canine pelvic limb gait analysis.
    Lin CC; Wu CH; Chou PY; Wang SN; Hsu WR; Lu TW
    BMC Vet Res; 2020 Apr; 16(1):105. PubMed ID: 32245381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait.
    Moissenet F; Chèze L; Dumas R
    J Biomech; 2014 Jan; 47(1):50-8. PubMed ID: 24210475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling, simulation and optimisation of a human vertical jump.
    Spägele T; Kistner A; Gollhofer A
    J Biomech; 1999 May; 32(5):521-30. PubMed ID: 10327006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Lower limb joint contact forces and ground reaction forces analysis based on Azure Kinect motion capture].
    Peng Y; Wang L; Chen Z; Dang X; Chen F; Li G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Aug; 41(4):751-757. PubMed ID: 39218601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and validation of a finite-element musculoskeletal model incorporating a deformable contact model of the hip joint during gait.
    Li J
    J Mech Behav Biomed Mater; 2021 Jan; 113():104136. PubMed ID: 33053499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of step length and step frequency on lower-limb muscle function in human gait.
    Lim YP; Lin YC; Pandy MG
    J Biomech; 2017 May; 57():1-7. PubMed ID: 28411958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a novel MATLAB-based framework for implementing mechanical joint stability constraints within OpenSim musculoskeletal models.
    Akhavanfar MH; Brandon SCE; Brown SHM; Graham RB
    J Biomech; 2019 Jun; 91():61-68. PubMed ID: 31138478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of a subject-specific musculoskeletal model to the uncertainties on the joint axes location.
    Martelli S; Valente G; Viceconti M; Taddei F
    Comput Methods Biomech Biomed Engin; 2015; 18(14):1555-63. PubMed ID: 24963785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fair and EMG-validated comparison of recruitment criteria, musculotendon models and muscle coordination strategies, for the inverse-dynamics based optimization of muscle forces during gait.
    Michaud F; Lamas M; Lugrís U; Cuadrado J
    J Neuroeng Rehabil; 2021 Jan; 18(1):17. PubMed ID: 33509205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implementation of controlling strategy in a biomechanical lower limb model with active muscles for coupling multibody dynamics and finite element analysis.
    Mo F; Li J; Dan M; Liu T; Behr M
    J Biomech; 2019 Jun; 91():51-60. PubMed ID: 31101432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computationally efficient strategy to estimate muscle forces in a finite element musculoskeletal model of the lower limb.
    Navacchia A; Hume DR; Rullkoetter PJ; Shelburne KB
    J Biomech; 2019 Feb; 84():94-102. PubMed ID: 30616983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Musculoskeletal model choice influences hip joint load estimations during gait.
    Weinhandl JT; Bennett HJ
    J Biomech; 2019 Jun; 91():124-132. PubMed ID: 31126592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time inverse kinematics and inverse dynamics for lower limb applications using OpenSim.
    Pizzolato C; Reggiani M; Modenese L; Lloyd DG
    Comput Methods Biomech Biomed Engin; 2017 Mar; 20(4):436-445. PubMed ID: 27723992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Higher medially-directed joint reaction forces are a characteristic of dysplastic hips: A comparative study using subject-specific musculoskeletal models.
    Harris MD; MacWilliams BA; Bo Foreman K; Peters CL; Weiss JA; Anderson AE
    J Biomech; 2017 Mar; 54():80-87. PubMed ID: 28233552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a finite element musculoskeletal model with the ability to predict contractions of three-dimensional muscles.
    Li J; Lu Y; Miller SC; Jin Z; Hua X
    J Biomech; 2019 Sep; 94():230-234. PubMed ID: 31421809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model.
    El Habachi A; Moissenet F; Duprey S; Cheze L; Dumas R
    Med Biol Eng Comput; 2015 Jul; 53(7):655-67. PubMed ID: 25783762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of muscle forces in gait using a simulation of the electromyographic activity and numerical optimization.
    Ravera EP; Crespo MJ; Braidot AA
    Comput Methods Biomech Biomed Engin; 2016; 19(1):1-12. PubMed ID: 25408069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alterations of musculoskeletal models for a more accurate estimation of lower limb joint contact forces during normal gait: A systematic review.
    Moissenet F; Modenese L; Dumas R
    J Biomech; 2017 Oct; 63():8-20. PubMed ID: 28919103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.