These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35171239)

  • 21. Critical analysis of musculoskeletal modelling complexity in multibody biomechanical models of the upper limb.
    Quental C; Folgado J; Ambrósio J; Monteiro J
    Comput Methods Biomech Biomed Engin; 2015; 18(7):749-59. PubMed ID: 24156405
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of a falsification strategy to a musculoskeletal model of the lower limb and accuracy of the predicted hip contact force vector.
    Modenese L; Gopalakrishnan A; Phillips AT
    J Biomech; 2013 Apr; 46(6):1193-200. PubMed ID: 23427941
    [TBL] [Abstract][Full Text] [Related]  

  • 23. To what extent is joint and muscle mechanics predicted by musculoskeletal models sensitive to soft tissue artefacts?
    Lamberto G; Martelli S; Cappozzo A; Mazzà C
    J Biomech; 2017 Sep; 62():68-76. PubMed ID: 27622973
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimation of the muscle force distribution in ballistic motion based on a multibody methodology.
    Czaplicki A; Silva M; Ambrósio J; Jesus O; Abrantes J
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):45-54. PubMed ID: 16880156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interpreting Musculoskeletal Models and Dynamic Simulations: Causes and Effects of Differences Between Models.
    Roelker SA; Caruthers EJ; Baker RK; Pelz NC; Chaudhari AMW; Siston RA
    Ann Biomed Eng; 2017 Nov; 45(11):2635-2647. PubMed ID: 28779473
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A generic musculoskeletal model of the juvenile lower limb for biomechanical analyses of gait.
    Hainisch R; Kranzl A; Lin YC; Pandy MG; Gfoehler M
    Comput Methods Biomech Biomed Engin; 2021 Mar; 24(4):349-357. PubMed ID: 32940060
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A finite element model of the lower limb during stance phase of gait cycle including the muscle forces.
    Diffo Kaze A; Maas S; Arnoux PJ; Wolf C; Pape D
    Biomed Eng Online; 2017 Dec; 16(1):138. PubMed ID: 29212516
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimization-based prediction of asymmetric human gait.
    Xiang Y; Arora JS; Abdel-Malek K
    J Biomech; 2011 Feb; 44(4):683-93. PubMed ID: 21092968
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Muscle actions on crossed and non-crossed joints during upright standing and gait: A comprehensive description based on induced acceleration analysis.
    Souza TR; Schallig W; Veerkamp K; Magalhães FA; Okai-Nóbrega LA; Fonseca ST; van der Krogt MM
    J Biomech; 2022 Jan; 130():110874. PubMed ID: 34847446
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization.
    Duprey S; Cheze L; Dumas R
    J Biomech; 2010 Oct; 43(14):2858-62. PubMed ID: 20701914
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multibody Kinematics Optimization for the Estimation of Upper and Lower Limb Human Joint Kinematics: A Systematized Methodological Review.
    Begon M; Andersen MS; Dumas R
    J Biomech Eng; 2018 Mar; 140(3):. PubMed ID: 29238821
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of perturbing body segment parameters on calculated joint moments and muscle forces during gait.
    Wesseling M; de Groote F; Jonkers I
    J Biomech; 2014 Jan; 47(2):596-601. PubMed ID: 24332615
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A screening method to analyse the sensitivity of a lower limb multibody kinematic model.
    Jacquelin E; Brizard D; Dumas R
    Comput Methods Biomech Biomed Engin; 2019 Aug; 22(10):925-935. PubMed ID: 30999767
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of global and joint-to-joint methods for estimating the hip joint load and the muscle forces during walking.
    Fraysse F; Dumas R; Cheze L; Wang X
    J Biomech; 2009 Oct; 42(14):2357-62. PubMed ID: 19699479
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Can a reduction approach predict reliable joint contact and musculo-tendon forces?
    Dumas R; Barré A; Moissenet F; Aissaoui R
    J Biomech; 2019 Oct; 95():109329. PubMed ID: 31522745
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new shoulder model with a biologically inspired glenohumeral joint.
    Quental C; Folgado J; Ambrósio J; Monteiro J
    Med Eng Phys; 2016 Sep; 38(9):969-77. PubMed ID: 27381499
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The redundant nature of locomotor optimization laws.
    Collins JJ
    J Biomech; 1995 Mar; 28(3):251-67. PubMed ID: 7730385
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical predictions of hip joint and muscle forces during daily activities: A comparison of musculoskeletal models.
    Mathai B; Gupta S
    Proc Inst Mech Eng H; 2019 Jun; 233(6):636-647. PubMed ID: 30922155
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of hip joint load and translation using musculoskeletal modelling with force-dependent kinematics and experimental validation.
    Zhang X; Chen Z; Wang L; Yang W; Li D; Jin Z
    Proc Inst Mech Eng H; 2015 Jul; 229(7):477-90. PubMed ID: 26063118
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lower limb joint motion and muscle force in treadmill and over-ground exercise.
    Yao J; Guo N; Xiao Y; Li Z; Li Y; Pu F; Fan Y
    Biomed Eng Online; 2019 Aug; 18(1):89. PubMed ID: 31438944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.