These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35171339)

  • 1. High-temperature behavior of hyperthermostable Thermotoga maritima xylanase XYN10B after designed and evolved mutations.
    Wang Y; Wang J; Zhang Z; Yang J; Turunen O; Xiong H
    Appl Microbiol Biotechnol; 2022 Mar; 106(5-6):2017-2027. PubMed ID: 35171339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperthermostable Thermotoga maritima xylanase XYN10B shows high activity at high temperatures in the presence of biomass-dissolving hydrophilic ionic liquids.
    Yu T; Anbarasan S; Wang Y; Telli K; Aslan AS; Su Z; Zhou Y; Zhang L; Iivonen P; Havukainen S; Mentunen T; Hummel M; Sixta H; Binay B; Turunen O; Xiong H
    Extremophiles; 2016 Jul; 20(4):515-24. PubMed ID: 27240671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of orientation of carbohydrate binding modules family 22 and 6 on the catalytic activity of Thermotoga maritima xylanase XynB.
    Tajwar R; Shahid S; Zafar R; Akhtar MW
    Enzyme Microb Technol; 2017 Nov; 106():75-82. PubMed ID: 28859813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [High-level expression of an extreme-thermostable xylanase B from Thermotoga maritima MSB8 in Escherichia coli and Pichia pastoris].
    Yang MH; Li Y; Guan GH; Jiang ZQ
    Wei Sheng Wu Xue Bao; 2005 Apr; 45(2):236-40. PubMed ID: 15989268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-directed mutagenesis and thermostability of xylanase XYNB from Aspergillus niger 400264.
    Xie J; Song L; Li X; Yi X; Xu H; Li J; Qiao D; Cao Y
    Curr Microbiol; 2011 Jan; 62(1):242-8. PubMed ID: 20593181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the catalytic activity of thermostable xylanase from Thermotoga maritima via mutagenesis of non-catalytic residues at glycone subsites.
    Yang J; Ma T; Shang-Guan F; Han Z
    Enzyme Microb Technol; 2020 Sep; 139():109579. PubMed ID: 32732029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the Positional Binding and Substrate Interaction of a Highly Thermostable GH10 Xylanase from
    Yang J; Han Z
    Biomolecules; 2018 Jul; 8(3):. PubMed ID: 30061529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-directed mutagenesis of GH10 xylanase A from Penicillium canescens for determining factors affecting the enzyme thermostability.
    Denisenko YA; Gusakov AV; Rozhkova AM; Osipov DO; Zorov IN; Matys VY; Uporov IV; Sinitsyn AP
    Int J Biol Macromol; 2017 Nov; 104(Pt A):665-671. PubMed ID: 28634062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significantly improving the thermostability of a hyperthermophilic GH10 family xylanase XynAF1 by semi-rational design.
    Li G; Zhou X; Li Z; Liu Y; Liu D; Miao Y; Wan Q; Zhang R
    Appl Microbiol Biotechnol; 2021 Jun; 105(11):4561-4576. PubMed ID: 34014347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concommitant adaptation of a GH11 xylanase by directed evolution to create an alkali-tolerant/thermophilic enzyme.
    Ruller R; Alponti J; Deliberto LA; Zanphorlin LM; Machado CB; Ward RJ
    Protein Eng Des Sel; 2014 Aug; 27(8):255-62. PubMed ID: 25096197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis of the substrate subsite and the highly thermal stability of xylanase 10B from Thermotoga maritima MSB8.
    Ihsanawati ; Kumasaka T; Kaneko T; Morokuma C; Yatsunami R; Sato T; Nakamura S; Tanaka N
    Proteins; 2005 Dec; 61(4):999-1009. PubMed ID: 16247799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Truncated derivatives of a multidomain thermophilic glycosyl hydrolase family 10 xylanase from Thermotoga maritima reveal structure related activity profiles and substrate hydrolysis patterns.
    Verjans P; Dornez E; Segers M; Van Campenhout S; Bernaerts K; Beliën T; Delcour JA; Courtin CM
    J Biotechnol; 2010 Jan; 145(2):160-7. PubMed ID: 19883701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of xylobiose from the autohydrolysis explosion liquor of corncob using Thermotoga maritima xylanase B (XynB) immobilized on nickel-chelated Eupergit C.
    Tan SS; Li DY; Jiang ZQ; Zhu YP; Shi B; Li LT
    Bioresour Technol; 2008 Jan; 99(1):200-4. PubMed ID: 17258452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct roles for carbohydrate-binding modules of glycoside hydrolase 10 (GH10) and GH11 xylanases from Caldicellulosiruptor sp. strain F32 in thermostability and catalytic efficiency.
    Meng DD; Ying Y; Chen XH; Lu M; Ning K; Wang LS; Li FL
    Appl Environ Microbiol; 2015 Mar; 81(6):2006-14. PubMed ID: 25576604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequencing and expression of additional xylanase genes from the hyperthermophile Thermotoga maritima FjSS3B.1.
    Reeves RA; Gibbs MD; Morris DD; Griffiths KR; Saul DJ; Bergquist PL
    Appl Environ Microbiol; 2000 Apr; 66(4):1532-7. PubMed ID: 10742238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directed evolution of the thermostable xylanase from Thermomyces lanuginosus.
    Stephens DE; Rumbold K; Permaul K; Prior BA; Singh S
    J Biotechnol; 2007 Jan; 127(3):348-54. PubMed ID: 16893583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xylanase XynA from the hyperthermophilic bacterium Thermotoga maritima: structure and stability of the recombinant enzyme and its isolated cellulose-binding domain.
    Wassenberg D; Schurig H; Liebl W; Jaenicke R
    Protein Sci; 1997 Aug; 6(8):1718-26. PubMed ID: 9260284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partial characterization of the Streptomyces lividans xlnB promoter and its use for expression of a thermostable xylanase from Thermotoga maritima.
    Chen CC; Westpheling J
    Appl Environ Microbiol; 1998 Nov; 64(11):4217-25. PubMed ID: 9797268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of GH10 family xylanase thermostability by introducing of an extra α-helix at the C-terminal.
    Li G; Chen X; Zhou X; Huang R; Li L; Miao Y; Liu D; Zhang R
    Biochem Biophys Res Commun; 2019 Jul; 515(3):417-422. PubMed ID: 31160089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two Extremely Thermostable Xylanases of the Hyperthermophilic Bacterium Thermotoga maritima MSB8.
    Winterhalter C; Liebl W
    Appl Environ Microbiol; 1995 May; 61(5):1810-5. PubMed ID: 16535021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.