These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1013 related articles for article (PubMed ID: 35171347)
1. Machine learning-based prediction of postpartum hemorrhage after vaginal delivery: combining bleeding high risk factors and uterine contraction curve. Liu J; Wang C; Yan R; Lu Y; Bai J; Wang H; Li R Arch Gynecol Obstet; 2022 Oct; 306(4):1015-1025. PubMed ID: 35171347 [TBL] [Abstract][Full Text] [Related]
2. Machine learning approach for the prediction of postpartum hemorrhage in vaginal birth. Akazawa M; Hashimoto K; Katsuhiko N; Kaname Y Sci Rep; 2021 Nov; 11(1):22620. PubMed ID: 34799687 [TBL] [Abstract][Full Text] [Related]
3. Prediction of Maternal Hemorrhage Using Machine Learning: Retrospective Cohort Study. Westcott JM; Hughes F; Liu W; Grivainis M; Hoskins I; Fenyo D J Med Internet Res; 2022 Jul; 24(7):e34108. PubMed ID: 35849436 [TBL] [Abstract][Full Text] [Related]
4. Prediction and Evaluation of Machine Learning Algorithm for Prediction of Blood Transfusion during Cesarean Section and Analysis of Risk Factors of Hypothermia during Anesthesia Recovery. Ren W; Li D; Wang J; Zhang J; Fu Z; Yao Y Comput Math Methods Med; 2022; 2022():8661324. PubMed ID: 35465016 [TBL] [Abstract][Full Text] [Related]
5. Prediction of postpartum hemorrhage using traditional statistical analysis and a machine learning approach. Mehrnoush V; Ranjbar A; Farashah MV; Darsareh F; Shekari M; Jahromi MS AJOG Glob Rep; 2023 May; 3(2):100185. PubMed ID: 36935935 [TBL] [Abstract][Full Text] [Related]
6. Real-time data analysis using a machine learning model significantly improves prediction of successful vaginal deliveries. Guedalia J; Lipschuetz M; Novoselsky-Persky M; Cohen SM; Rottenstreich A; Levin G; Yagel S; Unger R; Sompolinsky Y Am J Obstet Gynecol; 2020 Sep; 223(3):437.e1-437.e15. PubMed ID: 32434000 [TBL] [Abstract][Full Text] [Related]
8. Interpretable machine learning predicts postpartum hemorrhage with severe maternal morbidity in a lower-risk laboring obstetric population. Lengerich BJ; Caruana R; Painter I; Weeks WB; Sitcov K; Souter V Am J Obstet Gynecol MFM; 2024 Aug; 6(8):101391. PubMed ID: 38851393 [TBL] [Abstract][Full Text] [Related]
9. A Risk Prediction Model for Physical Restraints Among Older Chinese Adults in Long-term Care Facilities: Machine Learning Study. Wang J; Chen H; Wang H; Liu W; Peng D; Zhao Q; Xiao M J Med Internet Res; 2023 Apr; 25():e43815. PubMed ID: 37023416 [TBL] [Abstract][Full Text] [Related]
10. Development and validation of a machine learning-based predictive model for assessing the 90-day prognostic outcome of patients with spontaneous intracerebral hemorrhage. Geng Z; Yang C; Zhao Z; Yan Y; Guo T; Liu C; Wu A; Wu X; Wei L; Tian Y; Hu P; Wang K J Transl Med; 2024 Mar; 22(1):236. PubMed ID: 38439097 [TBL] [Abstract][Full Text] [Related]
11. Joint modeling strategy for using electronic medical records data to build machine learning models: an example of intracerebral hemorrhage. Tang J; Wang X; Wan H; Lin C; Shao Z; Chang Y; Wang H; Wu Y; Zhang T; Du Y BMC Med Inform Decis Mak; 2022 Oct; 22(1):278. PubMed ID: 36284327 [TBL] [Abstract][Full Text] [Related]
12. Prediction and feature selection of low birth weight using machine learning algorithms. Reza TB; Salma N J Health Popul Nutr; 2024 Oct; 43(1):157. PubMed ID: 39396025 [TBL] [Abstract][Full Text] [Related]
13. Comparison of Conventional Logistic Regression and Machine Learning Methods for Predicting Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage: A Multicentric Observational Cohort Study. Hu P; Li Y; Liu Y; Guo G; Gao X; Su Z; Wang L; Deng G; Yang S; Qi Y; Xu Y; Ye L; Sun Q; Nie X; Sun Y; Li M; Zhang H; Chen Q Front Aging Neurosci; 2022; 14():857521. PubMed ID: 35783143 [TBL] [Abstract][Full Text] [Related]
14. Quantitative prediction of postpartum hemorrhage in cesarean section on machine learning. Wang M; Yi G; Zhang Y; Li M; Zhang J BMC Med Inform Decis Mak; 2024 Jun; 24(1):166. PubMed ID: 38872184 [TBL] [Abstract][Full Text] [Related]
15. Establishment and Validation of Risk Prediction Model for Postpartum Hemorrhage for Pregnant Women ≥35 Years of Age in Natural Delivery. Yang C; Wu H Altern Ther Health Med; 2023 Nov; 29(8):876-881. PubMed ID: 37708560 [TBL] [Abstract][Full Text] [Related]
16. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction? Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466 [TBL] [Abstract][Full Text] [Related]
17. Machine Learning Models for Prediction of Maternal Hemorrhage and Transfusion: Model Development Study. Ahmadzia HK; Dzienny AC; Bopf M; Phillips JM; Federspiel JJ; Amdur R; Rice MM; Rodriguez L JMIR Bioinform Biotechnol; 2024 Feb; 5():e52059. PubMed ID: 38935950 [TBL] [Abstract][Full Text] [Related]
18. Prediction of postpartum hemorrhage in women with gestational hypertension or mild preeclampsia at term. Koopmans CM; van der Tuuk K; Groen H; Doornbos JP; de Graaf IM; van der Salm PC; Porath MM; Kuppens SM; Wijnen EJ; Aardenburg R; van Loon AJ; Akerboom BM; van der Lans PJ; Mol BW; van Pampus MG; Acta Obstet Gynecol Scand; 2014 Apr; 93(4):399-407. PubMed ID: 24575790 [TBL] [Abstract][Full Text] [Related]
19. Construction of a predictive model for radiation proctitis after radiotherapy for female pelvic tumors based on machine learning. Xie H; Gong M; Zhang J; Li Q Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2022 Aug; 47(8):1065-1074. PubMed ID: 36097774 [TBL] [Abstract][Full Text] [Related]
20. A risk model to predict severe postpartum hemorrhage in patients with placenta previa: a single-center retrospective study. Chen C; Liu X; Chen D; Huang S; Yan X; Liu H; Chang Q; Liang Z Ann Palliat Med; 2019 Nov; 8(5):611-621. PubMed ID: 31594367 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]