These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35171556)

  • 1. An Integrated Assessment of Emissions, Air Quality, and Public Health Impacts of China's Transition to Electric Vehicles.
    Hsieh IL; Chossière GP; Gençer E; Chen H; Barrett S; Green WH
    Environ Sci Technol; 2022 Feb; ():. PubMed ID: 35171556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regionally differentiated promotion of electric vehicles in China considering environmental and human health impacts.
    Fang YR; Sun X; Zhang S; Liu G; Liu X; Zhang P; Kang Y; Dai H
    Environ Res Lett; 2023 Jul; 18(7):074022. PubMed ID: 37362199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Well-to-wheel greenhouse gas emissions of electric versus combustion vehicles from 2018 to 2030 in the US.
    Challa R; Kamath D; Anctil A
    J Environ Manage; 2022 Apr; 308():114592. PubMed ID: 35121453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Health benefits of vehicle electrification through air pollution in Shanghai, China.
    Zhang S; Jiang Y; Zhang S; Choma EF
    Sci Total Environ; 2024 Mar; 914():169859. PubMed ID: 38190893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Comparative life cycle environmental assessment between electric taxi and gasoline taxi in Beijing].
    Shi XQ; Sun ZX; Li XN; Li JX; Yang JX
    Huan Jing Ke Xue; 2015 Mar; 36(3):1105-16. PubMed ID: 25929083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Greenhouse gas emission benefits of adopting new energy vehicles in Suzhou City, China: A case study.
    Da C; Gu X; Lu C; Hua R; Chang X; Cheng Y; Qian F; Wang Y
    Environ Sci Pollut Res Int; 2022 Oct; 29(50):76286-76297. PubMed ID: 35668254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate and environmental effects of electric vehicles versus compressed natural gas vehicles in China: a life-cycle analysis at provincial level.
    Huo H; Zhang Q; Liu F; He K
    Environ Sci Technol; 2013 Feb; 47(3):1711-8. PubMed ID: 23276251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Lancet Countdown on PM
    Cai W; Hui J; Wang C; Zheng Y; Zhang X; Zhang Q; Gong P
    Lancet Planet Health; 2018 Apr; 2(4):e151-e161. PubMed ID: 29615216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of total PM emissions emitted from electric and internal combustion engine vehicles: An experimental analysis.
    Woo SH; Jang H; Lee SB; Lee S
    Sci Total Environ; 2022 Oct; 842():156961. PubMed ID: 35760182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multisectoral drivers of decarbonizing battery electric vehicles in China.
    Wang F; Zhang S; Zhao Y; Ma Y; Zhang Y; Hove A; Wu Y
    PNAS Nexus; 2023 May; 2(5):pgad123. PubMed ID: 37200798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Health benefits from cleaner vehicles and increased active transportation in Seattle, Washington.
    Filigrana P; Levy JI; Gauthier J; Batterman S; Adar SD
    J Expo Sci Environ Epidemiol; 2022 Jul; 32(4):538-544. PubMed ID: 35288650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impacts from cold start and road grade on real-world emissions and fuel consumption of gasoline, diesel and hybrid-electric light-duty passenger vehicles.
    He L; You Y; Zheng X; Zhang S; Li Z; Zhang Z; Wu Y; Hao J
    Sci Total Environ; 2022 Dec; 851(Pt 1):158045. PubMed ID: 35981594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Provincial Greenhouse Gas Emissions of Gasoline and Plug-in Electric Vehicles in China: Comparison from the Consumption-Based Electricity Perspective.
    Gan Y; Lu Z; He X; Hao C; Wang Y; Cai H; Wang M; Elgowainy A; Przesmitzki S; Bouchard J
    Environ Sci Technol; 2021 May; 55(10):6944-6956. PubMed ID: 33945267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large Decreases in Tailpipe Criteria Pollutant Emissions from the U.S. Light-Duty Vehicle Fleet Expected in 2020-2040.
    Dolan RH; Wallington TJ; Anderson JE
    Environ Sci Technol; 2024 Feb; ():. PubMed ID: 38323898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life Cycle Air Emissions External Costs Assessment for Comparing Electric and Traditional Passenger Cars.
    Girardi P; Brambilla C; Mela G
    Integr Environ Assess Manag; 2020 Jan; 16(1):140-150. PubMed ID: 31502735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method to predict electric vehicles' market penetration as well as its impact on energy saving and CO
    Fu S; Fu H
    Sci Prog; 2021; 104(3):368504211040286. PubMed ID: 34477458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life Cycle Assessment of Vehicle Lightweighting: A Physics-Based Model To Estimate Use-Phase Fuel Consumption of Electrified Vehicles.
    Kim HC; Wallington TJ
    Environ Sci Technol; 2016 Oct; 50(20):11226-11233. PubMed ID: 27533735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporating health co-benefits into technology pathways to achieve China's 2060 carbon neutrality goal: a modelling study.
    Zhang S; An K; Li J; Weng Y; Zhang S; Wang S; Cai W; Wang C; Gong P
    Lancet Planet Health; 2021 Nov; 5(11):e808-e817. PubMed ID: 34758346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life cycle water footprint of electric and internal combustion engine vehicles in China.
    Yang L; Chen H; Li H; Feng Y
    Environ Sci Pollut Res Int; 2023 Jul; 30(33):80442-80461. PubMed ID: 37300733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment.
    Elgowainy A; Han J; Ward J; Joseck F; Gohlke D; Lindauer A; Ramsden T; Biddy M; Alexander M; Barnhart S; Sutherland I; Verduzco L; Wallington TJ
    Environ Sci Technol; 2018 Feb; 52(4):2392-2399. PubMed ID: 29298387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.