These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35171556)

  • 21. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment.
    Elgowainy A; Han J; Ward J; Joseck F; Gohlke D; Lindauer A; Ramsden T; Biddy M; Alexander M; Barnhart S; Sutherland I; Verduzco L; Wallington TJ
    Environ Sci Technol; 2018 Feb; 52(4):2392-2399. PubMed ID: 29298387
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The inharmonious mechanism of CO
    Wang L; Yu Y; Huang K; Zhang Z; Li X
    J Environ Manage; 2020 Nov; 274():111236. PubMed ID: 32827870
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatial and Cross-Sectoral Transfer of Air Pollutant Emissions from the Fleet Electrification in China by 2030.
    Zhang S; Xiong Y; Liang X; Wang F; Liang S; Wu Y
    Environ Sci Technol; 2023 Dec; 57(50):21249-21259. PubMed ID: 38054598
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessing the health impacts of electric vehicles through air pollution in the United States.
    Choma EF; Evans JS; Hammitt JK; Gómez-Ibáñez JA; Spengler JD
    Environ Int; 2020 Nov; 144():106015. PubMed ID: 32858467
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Benefits of near-zero freight: The air quality and health impacts of low-NO
    Mac Kinnon M; Zhu S; Cervantes A; Dabdub D; Samuelsen GS
    J Air Waste Manag Assoc; 2021 Nov; 71(11):1428-1444. PubMed ID: 34287106
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon mitigation and health effects of fleet electrification in China's Yangtze River Delta.
    Zhu Y; Liu Y; Liu X; Wang H
    Environ Int; 2023 Oct; 180():108203. PubMed ID: 37717521
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Life cycle air emissions impacts and ownership costs of light-duty vehicles using natural gas as a primary energy source.
    Luk JM; Saville BA; MacLean HL
    Environ Sci Technol; 2015 Apr; 49(8):5151-60. PubMed ID: 25825338
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the pursuit of emissions-free clean mobility - Electric vehicles versus e-fuels.
    Ravi SS; Brace C; Larkin C; Aziz M; Leach F; Turner JW
    Sci Total Environ; 2023 Jun; 875():162688. PubMed ID: 36898550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electric vehicles in China: emissions and health impacts.
    Ji S; Cherry CR; J Bechle M; Wu Y; Marshall JD
    Environ Sci Technol; 2012 Feb; 46(4):2018-24. PubMed ID: 22201325
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Life Cycle Greenhouse Gas Emissions of the USPS Next-Generation Delivery Vehicle Fleet.
    Woody M; Vaishnav P; Craig MT; Keoleian GA
    Environ Sci Technol; 2022 Sep; 56(18):13391-13397. PubMed ID: 36018721
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An assessment of electric vehicles: technology, infrastructure requirements, greenhouse-gas emissions, petroleum use, material use, lifetime cost, consumer acceptance and policy initiatives.
    Delucchi MA; Yang C; Burke AF; Ogden JM; Kurani K; Kessler J; Sperling D
    Philos Trans A Math Phys Eng Sci; 2014 Jan; 372(2006):20120325. PubMed ID: 24298079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characteristics of black carbon emissions from in-use light-duty passenger vehicles.
    Zheng X; Zhang S; Wu Y; Zhang KM; Wu X; Li Z; Hao J
    Environ Pollut; 2017 Dec; 231(Pt 1):348-356. PubMed ID: 28810204
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A review of the life cycle assessment of electric vehicles: Considering the influence of batteries.
    Xia X; Li P
    Sci Total Environ; 2022 Mar; 814():152870. PubMed ID: 34990672
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Public Health and Climate Benefits and Trade-Offs of U.S. Vehicle Electrification.
    Peters DR; Schnell JL; Kinney PL; Naik V; Horton DE
    Geohealth; 2020 Oct; 4(10):e2020GH000275. PubMed ID: 33094205
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Which type of electric vehicle is worth promoting mostly in the context of carbon peaking and carbon neutrality? A case study for a metropolis in China.
    Yu Y; Xu H; Cheng J; Wan F; Ju L; Liu Q; Liu J
    Sci Total Environ; 2022 Sep; 837():155626. PubMed ID: 35504393
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impacts on real-world extra cold start emissions: Fuel injection, powertrain, aftertreatment and ambient temperature.
    Wu X; Zhao H; He L; Yang X; Jiang H; Fu M; Yin H; Ding Y
    Environ Pollut; 2023 May; 324():121339. PubMed ID: 36863441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Health and Climate Incentives for the Deployment of Cleaner On-Road Vehicle Technologies.
    Minet L; Wang A; Hatzopoulou M
    Environ Sci Technol; 2021 May; 55(10):6602-6612. PubMed ID: 33929197
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transport oil product consumption and GHG emission reduction potential in China: An electric vehicle-based scenario analysis.
    Zheng Y; Li S; Xu S
    PLoS One; 2019; 14(9):e0222448. PubMed ID: 31525217
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impacts of Regulations on Air Quality and Emergency Department Visits in the Atlanta Metropolitan Area, 1999-2013.
    Russell AG; Tolbert P; Henneman L; Abrams J; Liu C; Klein M; Mulholland J; Sarnat SE; Hu Y; Chang HH; Odman T; Strickland MJ; Shen H; Lawal A
    Res Rep Health Eff Inst; 2018 Apr; 2018(195):1-93. PubMed ID: 31883240
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact assessment of vehicle electrification pathways on emissions of CO
    Duan S; Qiu Z; Liu Z; Liu L
    Sci Total Environ; 2023 Oct; 893():164856. PubMed ID: 37327892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.