BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35171570)

  • 1. Liposomal Targeting Modifies Endosomal Escape: Design and Mechanistic Implications.
    Mejia F; Khan S; Bilgicer B
    ACS Biomater Sci Eng; 2022 Mar; 8(3):1067-1073. PubMed ID: 35171570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and optimization of tunable endosomal escape parameters for enhanced efficacy in peptide-targeted prodrug-loaded nanoparticles.
    Mejia F; Khan S; Omstead DT; Minetos C; Bilgicer B
    Nanoscale; 2022 Jan; 14(4):1226-1240. PubMed ID: 34993530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles.
    Ahmad A; Khan JM; Haque S
    Biochimie; 2019 May; 160():61-75. PubMed ID: 30797879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-responsive cationic liposome for endosomal escape mediated drug delivery.
    Rayamajhi S; Marchitto J; Nguyen TDT; Marasini R; Celia C; Aryal S
    Colloids Surf B Biointerfaces; 2020 Apr; 188():110804. PubMed ID: 31972443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of Endosomolytic Peptides with Varying Disruption Mechanisms into EGFR-Targeted Protein Conjugates: The Effect on Intracellular Protein Delivery and EGFR Specificity in Breast Cancer Cells.
    Lieser RM; Li Q; Chen W; Sullivan MO
    Mol Pharm; 2022 Feb; 19(2):661-673. PubMed ID: 35040326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Octaarginine- and octalysine-modified nanoparticles have different modes of endosomal escape.
    El-Sayed A; Khalil IA; Kogure K; Futaki S; Harashima H
    J Biol Chem; 2008 Aug; 283(34):23450-61. PubMed ID: 18550548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endosomal Escape of Bioactives Deployed via Nanocarriers: Insights Into the Design of Polymeric Micelles.
    Butt AM; Abdullah N; Rani NNIM; Ahmad N; Amin MCIM
    Pharm Res; 2022 Jun; 39(6):1047-1064. PubMed ID: 35619043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing Endosomal Escape Using pHlexi Nanoparticles.
    Kongkatigumjorn N; Cortez-Jugo C; Czuba E; Wong AS; Hodgetts RY; Johnston AP; Such GK
    Macromol Biosci; 2017 Apr; 17(4):. PubMed ID: 27786422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling endosomal escape using nanoparticle composition: current progress and future perspectives.
    Cupic KI; Rennick JJ; Johnston AP; Such GK
    Nanomedicine (Lond); 2019 Jan; 14(2):215-223. PubMed ID: 30511881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endosomal escape of delivered mRNA from endosomal recycling tubules visualized at the nanoscale.
    Paramasivam P; Franke C; Stöter M; Höijer A; Bartesaghi S; Sabirsh A; Lindfors L; Arteta MY; Dahlén A; Bak A; Andersson S; Kalaidzidis Y; Bickle M; Zerial M
    J Cell Biol; 2022 Feb; 221(2):. PubMed ID: 34882187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endosomal Size and Membrane Leakiness Influence Proton Sponge-Based Rupture of Endosomal Vesicles.
    Vermeulen LMP; Brans T; Samal SK; Dubruel P; Demeester J; De Smedt SC; Remaut K; Braeckmans K
    ACS Nano; 2018 Mar; 12(3):2332-2345. PubMed ID: 29505236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Virus-Mimicking, Endosomolytic Liposomal System for Efficient, pH-Triggered Intracellular Drug Delivery.
    Chen S; Chen R
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22457-67. PubMed ID: 27512894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a novel nanoparticle by dual modification with the pluripotential cell-penetrating peptide PepFect6 for cellular uptake, endosomal escape, and decondensation of an siRNA core complex.
    Mitsueda A; Shimatani Y; Ito M; Ohgita T; Yamada A; Hama S; Gräslund A; Lindberg S; Langel Ü; Harashima H; Nakase I; Futaki S; Kogure K
    Biopolymers; 2013 Nov; 100(6):698-704. PubMed ID: 23893316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying the Endosomal Escape of pH-Responsive Nanoparticles Using the Split Luciferase Endosomal Escape Quantification Assay.
    Beach MA; Teo SLY; Chen MZ; Smith SA; Pouton CW; Johnston APR; Such GK
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):3653-3661. PubMed ID: 34964593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing Mesoporous Silica Nanoparticles to Overcome Biological Barriers by Incorporating Targeting and Endosomal Escape.
    Gisbert-Garzarán M; Lozano D; Matsumoto K; Komatsu A; Manzano M; Tamanoi F; Vallet-Regí M
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9656-9666. PubMed ID: 33596035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence microscopy colocalization of lipid-nucleic acid nanoparticles with wildtype and mutant Rab5-GFP: A platform for investigating early endosomal events.
    Majzoub RN; Chan CL; Ewert KK; Silva BF; Liang KS; Safinya CR
    Biochim Biophys Acta; 2015 Jun; 1848(6):1308-18. PubMed ID: 25753113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transfection mechanisms of polyplexes, lipoplexes, and stealth liposomes in α₅β₁ integrin bearing DLD-1 colorectal cancer cells.
    Adil MM; Erdman ZS; Kokkoli E
    Langmuir; 2014 Apr; 30(13):3802-10. PubMed ID: 24635537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering liposomal nanoparticles for targeted gene therapy.
    Zylberberg C; Gaskill K; Pasley S; Matosevic S
    Gene Ther; 2017 Aug; 24(8):441-452. PubMed ID: 28504657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine.
    Al-Jamal WT; Kostarelos K
    Acc Chem Res; 2011 Oct; 44(10):1094-104. PubMed ID: 21812415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delivering anti-cancer drugs with endosomal pH-sensitive anti-cancer liposomes.
    Moku G; Gulla SK; Nimmu NV; Khalid S; Chaudhuri A
    Biomater Sci; 2016 Apr; 4(4):627-38. PubMed ID: 26806172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.