These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 35171753)
1. Effect of polycaprolactone scaffolds containing different weights of graphene on healing in large osteochondral defect model. Basal O; Ozmen O; Deliormanli AM J Biomater Sci Polym Ed; 2022 Jun; 33(9):1123-1139. PubMed ID: 35171753 [TBL] [Abstract][Full Text] [Related]
2. [Effect of icariin/attapulgite/collagen type Ning Y; Qin W; Ren Y; Li C; Chen W; Zhao H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2019 Sep; 33(9):1181-1189. PubMed ID: 31512463 [TBL] [Abstract][Full Text] [Related]
3. [EXPERIMENTAL STUDY ON BONE DEFECT REPAIR WITH COMPOSITE OF ATTAPULGITE/COLLAGEN TYPE I/POLY (CAPROLACTONE) IN RABBITS]. Zhang X; Song X; Wang W; Li Z; Zhao H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 May; 30(5):626-633. PubMed ID: 29786308 [TBL] [Abstract][Full Text] [Related]
4. A Rabbit Model of Osteochondral Regeneration Using Three-Dimensional Printed Polycaprolactone-Hydroxyapatite Scaffolds Coated with Umbilical Cord Blood Mesenchymal Stem Cells and Chondrocytes. Zheng P; Hu X; Lou Y; Tang K Med Sci Monit; 2019 Oct; 25():7361-7369. PubMed ID: 31570688 [TBL] [Abstract][Full Text] [Related]
5. In vivo evaluation of 3-dimensional polycaprolactone scaffolds for cartilage repair in rabbits. Martinez-Diaz S; Garcia-Giralt N; Lebourg M; Gómez-Tejedor JA; Vila G; Caceres E; Benito P; Pradas MM; Nogues X; Ribelles JL; Monllau JC Am J Sports Med; 2010 Mar; 38(3):509-19. PubMed ID: 20093424 [TBL] [Abstract][Full Text] [Related]
6. Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model. Dahlin RL; Kinard LA; Lam J; Needham CJ; Lu S; Kasper FK; Mikos AG Biomaterials; 2014 Aug; 35(26):7460-9. PubMed ID: 24927682 [TBL] [Abstract][Full Text] [Related]
7. Tissue-engineered constructs: the effect of scaffold architecture in osteochondral repair. Emans PJ; Jansen EJ; van Iersel D; Welting TJ; Woodfield TB; Bulstra SK; Riesle J; van Rhijn LW; Kuijer R J Tissue Eng Regen Med; 2013 Sep; 7(9):751-6. PubMed ID: 22438217 [TBL] [Abstract][Full Text] [Related]
8. [Experimental study on loading naringin composite scaffolds for repairing rabbit osteochondral defects]. Huang J; Wang S; Zhang X; Li G; Ji P; Zhao H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2017 Apr; 31(4):489-496. PubMed ID: 29798617 [TBL] [Abstract][Full Text] [Related]
9. Articular cartilage tissue engineering based on a mechano-active scaffold made of poly(L-lactide-co-epsilon-caprolactone): In vivo performance in adult rabbits. Xie J; Han Z; Naito M; Maeyama A; Kim SH; Kim YH; Matsuda T J Biomed Mater Res B Appl Biomater; 2010 Jul; 94(1):80-8. PubMed ID: 20336738 [TBL] [Abstract][Full Text] [Related]
10. Healing of Osteochondral Defects Implanted with Biomimetic Scaffolds of Poly(ε-Caprolactone)/Hydroxyapatite and Glycidyl-Methacrylate-Modified Hyaluronic Acid in a Minipig. Hsieh YH; Shen BY; Wang YH; Lin B; Lee HM; Hsieh MF Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29642550 [TBL] [Abstract][Full Text] [Related]
11. Direct Write Assembly of Graphene/Poly(ε-Caprolactone) Composite Scaffolds and Evaluation of Their Biological Performance Using Mouse Bone Marrow Mesenchymal Stem Cells. Deliormanlı AM Appl Biochem Biotechnol; 2019 Aug; 188(4):1117-1133. PubMed ID: 30809787 [TBL] [Abstract][Full Text] [Related]
12. [Effect of polycaprolactone-ascobic acid scaffold in repairing articular cartilage defects in rabbits]. Huang ZH; Song B; Chen YF; Liao ZT; Zhao L Nan Fang Yi Ke Da Xue Xue Bao; 2017 May; 37(5):607-613. PubMed ID: 28539282 [TBL] [Abstract][Full Text] [Related]
13. A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: in vitro and in vivo studies. Christensen BB; Foldager CB; Hansen OM; Kristiansen AA; Le DQ; Nielsen AD; Nygaard JV; Bünger CE; Lind M Knee Surg Sports Traumatol Arthrosc; 2012 Jun; 20(6):1192-204. PubMed ID: 21971941 [TBL] [Abstract][Full Text] [Related]
15. Biological Response of Osteoblastic and Chondrogenic Cells to Graphene-Containing PCL/Bioactive Glass Bilayered Scaffolds for Osteochondral Tissue Engineering Applications. Deliormanlı AM; Atmaca H Appl Biochem Biotechnol; 2018 Dec; 186(4):972-989. PubMed ID: 29797300 [TBL] [Abstract][Full Text] [Related]
16. Repair of osteochondral defects with adipose stem cells and a dual growth factor-releasing scaffold in rabbits. Im GI; Lee JH J Biomed Mater Res B Appl Biomater; 2010 Feb; 92(2):552-60. PubMed ID: 19957354 [TBL] [Abstract][Full Text] [Related]
17. Bone Healing in Rat Segmental Femur Defects with Graphene-PCL-Coated Borate-Based Bioactive Glass Scaffolds. Basal O; Ozmen O; Deliormanlı AM Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36146043 [TBL] [Abstract][Full Text] [Related]