These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 35171782)

  • 21. Generalized Recurrent Neural Network accommodating Dynamic Causal Modeling for functional MRI analysis.
    Wang Y; Wang Y; Lui YW
    Neuroimage; 2018 Sep; 178():385-402. PubMed ID: 29782993
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reservoir Computing Universality With Stochastic Inputs.
    Gonon L; Ortega JP
    IEEE Trans Neural Netw Learn Syst; 2020 Jan; 31(1):100-112. PubMed ID: 30892244
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stability analysis of discrete-time recurrent neural networks.
    Barabanov NE; Prokhorov DV
    IEEE Trans Neural Netw; 2002; 13(2):292-303. PubMed ID: 18244432
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relaxed conditions for radial-basis function networks to be universal approximators.
    Liao Y; Fang SC; Nuttle HL
    Neural Netw; 2003 Sep; 16(7):1019-28. PubMed ID: 14692636
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An adaptive three-stage extended Kalman filter for nonlinear discrete-time system in presence of unknown inputs.
    Xiao M; Zhang Y; Wang Z; Fu H
    ISA Trans; 2018 Apr; 75():101-117. PubMed ID: 29471968
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing the Relationship Between Latent Linear Dynamical Systems and Low-Rank Recurrent Neural Network Models.
    Valente A; Ostojic S; Pillow JW
    Neural Comput; 2022 Aug; 34(9):1871-1892. PubMed ID: 35896161
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural networks with a continuous squashing function in the output are universal approximators.
    Castro JL; Mantas CJ; Benítez JM
    Neural Netw; 2000 Jul; 13(6):561-3. PubMed ID: 10987509
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimal filters with multiple packet losses and its application in wireless sensor networks.
    Liu Y; Xu B; Feng L; Li S
    Sensors (Basel); 2010; 10(4):3330-50. PubMed ID: 22319301
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distributed Adaptive-Neural Finite-Time Consensus Control for Stochastic Nonlinear Multiagent Systems Subject to Saturated Inputs.
    Sedghi F; Arefi MM; Abooee A; Yin S
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; 34(10):7704-7718. PubMed ID: 35157592
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Convergence study in extended Kalman filter-based training of recurrent neural networks.
    Wang X; Huang Y
    IEEE Trans Neural Netw; 2011 Apr; 22(4):588-600. PubMed ID: 21402512
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recurrent neural networks for dynamical systems: Applications to ordinary differential equations, collective motion, and hydrological modeling.
    Gajamannage K; Jayathilake DI; Park Y; Bollt EM
    Chaos; 2023 Jan; 33(1):013109. PubMed ID: 36725658
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Explicit Duration Recurrent Networks.
    Yu SZ
    IEEE Trans Neural Netw Learn Syst; 2022 Jul; 33(7):3120-3130. PubMed ID: 33497341
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Data-Driven Tabulation for Chemistry Integration Using Recurrent Neural Networks.
    Zhang Y; Lin Q; Du W; Qian F
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):5392-5402. PubMed ID: 35657848
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recurrent neural network based hybrid model for reconstructing gene regulatory network.
    Raza K; Alam M
    Comput Biol Chem; 2016 Oct; 64():322-334. PubMed ID: 27570069
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual extended Kalman filtering in recurrent neural networks(1).
    Leung CS; Chan LW
    Neural Netw; 2003 Mar; 16(2):223-39. PubMed ID: 12628608
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-organizing radial basis function network for real-time approximation of continuous-time dynamical systems.
    Lian J; Lee Y; Sudhoff SD; Zak SH
    IEEE Trans Neural Netw; 2008 Mar; 19(3):460-74. PubMed ID: 18334365
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reverse engineering recurrent networks for sentiment classification reveals line attractor dynamics.
    Maheswaranathan N; Williams AH; Golub MD; Ganguli S; Sussillo D
    Adv Neural Inf Process Syst; 2019 Dec; 32():15696-15705. PubMed ID: 32782423
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inference of gene networks from gene expression time series using recurrent neural networks and sparse MAP estimation.
    Chen CK
    J Bioinform Comput Biol; 2018 Aug; 16(4):1850009. PubMed ID: 30051742
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Artificial neural networks as approximators of stochastic processes.
    Belli MR; Conti M; Crippa P; Turchetti C
    Neural Netw; 1999 Jun; 12(4-5):647-658. PubMed ID: 12662675
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fast Kalman-like optimal FIR filter for time-variant systems with improved robustness.
    Zhao S; Shmaliy YS; Liu F
    ISA Trans; 2018 Sep; 80():160-168. PubMed ID: 30054034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.