These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1474 related articles for article (PubMed ID: 35171981)

  • 1. Pre-training graph neural networks for link prediction in biomedical networks.
    Long Y; Wu M; Liu Y; Fang Y; Kwoh CK; Chen J; Luo J; Li X
    Bioinformatics; 2022 Apr; 38(8):2254-2262. PubMed ID: 35171981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DTI-HETA: prediction of drug-target interactions based on GCN and GAT on heterogeneous graph.
    Shao K; Zhang Y; Wen Y; Zhang Z; He S; Bo X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35380622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PT-KGNN: A framework for pre-training biomedical knowledge graphs with graph neural networks.
    Wang Z; Wei Z
    Comput Biol Med; 2024 Aug; 178():108768. PubMed ID: 38936076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ensembling graph attention networks for human microbe-drug association prediction.
    Long Y; Wu M; Liu Y; Kwoh CK; Luo J; Li X
    Bioinformatics; 2020 Dec; 36(Suppl_2):i779-i786. PubMed ID: 33381844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MAMF-GCN: Multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder.
    Pan J; Lin H; Dong Y; Wang Y; Ji Y
    Comput Biol Med; 2022 Sep; 148():105823. PubMed ID: 35872410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graph embedding on biomedical networks: methods, applications and evaluations.
    Yue X; Wang Z; Huang J; Parthasarathy S; Moosavinasab S; Huang Y; Lin SM; Zhang W; Zhang P; Sun H
    Bioinformatics; 2020 Feb; 36(4):1241-1251. PubMed ID: 31584634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graph contextualized attention network for predicting synthetic lethality in human cancers.
    Long Y; Wu M; Liu Y; Zheng J; Kwoh CK; Luo J; Li X
    Bioinformatics; 2021 Aug; 37(16):2432-2440. PubMed ID: 33609108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LR-GNN: a graph neural network based on link representation for predicting molecular associations.
    Kang C; Zhang H; Liu Z; Huang S; Yin Y
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34889446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiphysical graph neural network (MP-GNN) for COVID-19 drug design.
    Li XS; Liu X; Lu L; Hua XS; Chi Y; Xia K
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35696650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FuseLinker: Leveraging LLM's pre-trained text embeddings and domain knowledge to enhance GNN-based link prediction on biomedical knowledge graphs.
    Xiao Y; Zhang S; Zhou H; Li M; Yang H; Zhang R
    J Biomed Inform; 2024 Oct; 158():104730. PubMed ID: 39326691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-embedding of edges and nodes with deep graph convolutional neural networks.
    Zhou Y; Huo H; Hou Z; Bu L; Mao J; Wang Y; Lv X; Bu F
    Sci Rep; 2023 Oct; 13(1):16966. PubMed ID: 37807013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GraphormerDTI: A graph transformer-based approach for drug-target interaction prediction.
    Gao M; Zhang D; Chen Y; Zhang Y; Wang Z; Wang X; Li S; Guo Y; Webb GI; Nguyen ATN; May L; Song J
    Comput Biol Med; 2024 May; 173():108339. PubMed ID: 38547658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SP-GNN: Learning structure and position information from graphs.
    Chen Y; You J; He J; Lin Y; Peng Y; Wu C; Zhu Y
    Neural Netw; 2023 Apr; 161():505-514. PubMed ID: 36805265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers.
    Wang S; Xu F; Li Y; Wang J; Zhang K; Liu Y; Wu M; Zheng J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i418-i425. PubMed ID: 34252965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PiLSL: pairwise interaction learning-based graph neural network for synthetic lethality prediction in human cancers.
    Liu X; Yu J; Tao S; Yang B; Wang S; Wang L; Bai F; Zheng J
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii106-ii112. PubMed ID: 36124788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural networks for link prediction in realistic biomedical graphs: a multi-dimensional evaluation of graph embedding-based approaches.
    Crichton G; Guo Y; Pyysalo S; Korhonen A
    BMC Bioinformatics; 2018 May; 19(1):176. PubMed ID: 29783926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-dropout graph convolutional network for predicting synthetic lethality in human cancers.
    Cai R; Chen X; Fang Y; Wu M; Hao Y
    Bioinformatics; 2020 Aug; 36(16):4458-4465. PubMed ID: 32221609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. iNGNN-DTI: prediction of drug-target interaction with interpretable nested graph neural network and pretrained molecule models.
    Sun Y; Li YY; Leung CK; Hu P
    Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38449285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences.
    Tsubaki M; Tomii K; Sese J
    Bioinformatics; 2019 Jan; 35(2):309-318. PubMed ID: 29982330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graph-DTI: A New Model for Drug-target Interaction Prediction Based on Heterogenous Network Graph Embedding.
    Qu X; Du G; Hu J; Cai Y
    Curr Comput Aided Drug Des; 2024; 20(6):1013-1024. PubMed ID: 37448360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 74.