These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 35172126)
21. Detecting mismatches of bird migration stopover and tree phenology in response to changing climate. Kellermann JL; van Riper C Oecologia; 2015 Aug; 178(4):1227-38. PubMed ID: 25822114 [TBL] [Abstract][Full Text] [Related]
22. Spawning salmon and the phenology of emergence in stream insects. Moore JW; Schindler DE Proc Biol Sci; 2010 Jun; 277(1688):1695-703. PubMed ID: 20129980 [TBL] [Abstract][Full Text] [Related]
23. Global shifts in the phenological synchrony of species interactions over recent decades. Kharouba HM; Ehrlén J; Gelman A; Bolmgren K; Allen JM; Travers SE; Wolkovich EM Proc Natl Acad Sci U S A; 2018 May; 115(20):5211-5216. PubMed ID: 29666247 [TBL] [Abstract][Full Text] [Related]
24. Holo- and hemimetabolism of aquatic insects: Implications for a differential cross-ecosystem flux of metals. Cetinić KA; Previšić A; Rožman M Environ Pollut; 2021 May; 277():116798. PubMed ID: 33677367 [TBL] [Abstract][Full Text] [Related]
25. Differences in fatty acid composition between aquatic and terrestrial insects used as food in human nutrition. Fontaneto D; Tommaseo-Ponzetta M; Galli C; Risé P; Glew RH; Paoletti MG Ecol Food Nutr; 2011; 50(4):351-67. PubMed ID: 21888601 [TBL] [Abstract][Full Text] [Related]
26. Nanoparticles transported from aquatic to terrestrial ecosystems via emerging aquatic insects compromise subsidy quality. Bundschuh M; Englert D; Rosenfeldt RR; Bundschuh R; Feckler A; Lüderwald S; Seitz F; Zubrod JP; Schulz R Sci Rep; 2019 Oct; 9(1):15676. PubMed ID: 31666603 [TBL] [Abstract][Full Text] [Related]
27. Seasonal and spatial variations of stream insect emergence in an intensive agricultural landscape. Raitif J; Plantegenest M; Agator O; Piscart C; Roussel JM Sci Total Environ; 2018 Dec; 644():594-601. PubMed ID: 29990909 [TBL] [Abstract][Full Text] [Related]
28. High elevation insect communities face shifting ecological and evolutionary landscapes. Shah AA; Dillon ME; Hotaling S; Woods HA Curr Opin Insect Sci; 2020 Oct; 41():1-6. PubMed ID: 32553896 [TBL] [Abstract][Full Text] [Related]
29. Metal Exposure and Sex Shape the Fatty Acid Profile of Midges and Reduce the Aquatic Subsidy to Terrestrial Food Webs. Pietz S; Kainz MJ; Schröder H; Manfrin A; Schäfer RB; Zubrod JP; Bundschuh M Environ Sci Technol; 2023 Jan; 57(2):951-962. PubMed ID: 36599118 [TBL] [Abstract][Full Text] [Related]
30. Climate change, breeding date and nestling diet: how temperature differentially affects seasonal changes in pied flycatcher diet depending on habitat variation. Burger C; Belskii E; Eeva T; Laaksonen T; Mägi M; Mänd R; Qvarnström A; Slagsvold T; Veen T; Visser ME; Wiebe KL; Wiley C; Wright J; Both C J Anim Ecol; 2012 Jul; 81(4):926-36. PubMed ID: 22356622 [TBL] [Abstract][Full Text] [Related]
31. Detecting mismatches in the phenology of cotton bollworm larvae and cotton flowering in response to climate change. Huang J; Hao H Int J Biometeorol; 2018 Aug; 62(8):1507-1520. PubMed ID: 29752540 [TBL] [Abstract][Full Text] [Related]
32. Subsidy Quality Affects Common Riparian Web-Building Spiders: Consequences of Aquatic Contamination and Food Resource. Pietz S; Kolbenschlag S; Röder N; Roodt AP; Steinmetz Z; Manfrin A; Schwenk K; Schulz R; Schäfer RB; Zubrod JP; Bundschuh M Environ Toxicol Chem; 2023 Jun; 42(6):1346-1358. PubMed ID: 36946335 [TBL] [Abstract][Full Text] [Related]
33. Grasshopper species' seasonal timing underlies shifts in phenological overlap in response to climate gradients, variability and change. Buckley LB; Graham SI; Nufio CR J Anim Ecol; 2021 May; 90(5):1252-1263. PubMed ID: 33630307 [TBL] [Abstract][Full Text] [Related]
34. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Visser ME; Holleman LJ; Gienapp P Oecologia; 2006 Feb; 147(1):164-72. PubMed ID: 16328547 [TBL] [Abstract][Full Text] [Related]
36. Fluxes of terrestrial and aquatic carbon by emergent mosquitoes: a test of controls and implications for cross-ecosystem linkages. Kraus JM; Vonesh JR Oecologia; 2012 Dec; 170(4):1111-22. PubMed ID: 22707036 [TBL] [Abstract][Full Text] [Related]
37. Community-wide changes in intertaxonomic temporal co-occurrence resulting from phenological shifts. Hua F; Hu J; Liu Y; Giam X; Lee TM; Luo H; Wu J; Liang Q; Zhao J; Long X; Pang H; Wang B; Liang W; Zhang Z; Gao X; Zhu J Glob Chang Biol; 2016 May; 22(5):1746-54. PubMed ID: 26680152 [TBL] [Abstract][Full Text] [Related]
38. Phenological mismatch and ontogenetic diet shifts interactively affect offspring condition in a passerine. Samplonius JM; Kappers EF; Brands S; Both C J Anim Ecol; 2016 Sep; 85(5):1255-64. PubMed ID: 27263989 [TBL] [Abstract][Full Text] [Related]
39. Experimental shifts in phenology affect fitness, foraging, and parasitism in a native solitary bee. Farzan S; Yang LH Ecology; 2018 Oct; 99(10):2187-2195. PubMed ID: 30066397 [TBL] [Abstract][Full Text] [Related]
40. Phenological mismatch with abiotic conditions implications for flowering in Arctic plants. Wheeler HC; Høye TT; Schmidt NM; Svenning JC; Forchhammer MC Ecology; 2015 Mar; 96(3):775-87. PubMed ID: 26236873 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]