BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35172159)

  • 1. VIP interneurons regulate olfactory bulb output and contribute to odor detection and discrimination.
    Wang D; Wu J; Liu P; Li X; Li J; He M; Li A
    Cell Rep; 2022 Feb; 38(7):110383. PubMed ID: 35172159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Subtype of Olfactory Bulb Interneurons Is Required for Odor Detection and Discrimination Behaviors.
    Takahashi H; Ogawa Y; Yoshihara S; Asahina R; Kinoshita M; Kitano T; Kitsuki M; Tatsumi K; Okuda M; Tatsumi K; Wanaka A; Hirai H; Stern PL; Tsuboi A
    J Neurosci; 2016 Aug; 36(31):8210-27. PubMed ID: 27488640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ablation of microRNAs in VIP
    Wu J; Liu P; Mao X; Qiu F; Gong L; Wu J; Wang D; He M; Li A
    Acta Physiol (Oxf); 2022 Feb; 234(2):e13767. PubMed ID: 34981885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reciprocal connectivity between mitral cells and external plexiform layer interneurons in the mouse olfactory bulb.
    Huang L; Garcia I; Jen HI; Arenkiel BR
    Front Neural Circuits; 2013; 7():32. PubMed ID: 23459611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-Range GABAergic Inhibition Modulates Spatiotemporal Dynamics of the Output Neurons in the Olfactory Bulb.
    Villar PS; Hu R; Araneda RC
    J Neurosci; 2021 Apr; 41(16):3610-3621. PubMed ID: 33687961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CCKergic Tufted Cells Differentially Drive Two Anatomically Segregated Inhibitory Circuits in the Mouse Olfactory Bulb.
    Sun X; Liu X; Starr ER; Liu S
    J Neurosci; 2020 Aug; 40(32):6189-6206. PubMed ID: 32605937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Task Learning Promotes Plasticity of Interneuron Connectivity Maps in the Olfactory Bulb.
    Huang L; Ung K; Garcia I; Quast KB; Cordiner K; Saggau P; Arenkiel BR
    J Neurosci; 2016 Aug; 36(34):8856-71. PubMed ID: 27559168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial Structure of Synchronized Inhibition in the Olfactory Bulb.
    Arnson HA; Strowbridge BW
    J Neurosci; 2017 Oct; 37(43):10468-10480. PubMed ID: 28947574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Independent control of gamma and theta activity by distinct interneuron networks in the olfactory bulb.
    Fukunaga I; Herb JT; Kollo M; Boyden ES; Schaefer AT
    Nat Neurosci; 2014 Sep; 17(9):1208-16. PubMed ID: 24997762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell type-specific and frequency-dependent centrifugal modulation in olfactory bulb output neurons in vivo.
    Puche AC; Hook C; Zhou FW
    J Neurophysiol; 2024 Jun; 131(6):1226-1239. PubMed ID: 38691531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in Glomerular-Layer-Mediated Feedforward Inhibition onto Mitral and Tufted Cells Lead to Distinct Modes of Intensity Coding.
    Geramita M; Urban NN
    J Neurosci; 2017 Feb; 37(6):1428-1438. PubMed ID: 28028200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical interneurons that specialize in disinhibitory control.
    Pi HJ; Hangya B; Kvitsiani D; Sanders JI; Huang ZJ; Kepecs A
    Nature; 2013 Nov; 503(7477):521-4. PubMed ID: 24097352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel odor processing by mitral and middle tufted cells in the olfactory bulb.
    Cavarretta F; Burton SD; Igarashi KM; Shepherd GM; Hines ML; Migliore M
    Sci Rep; 2018 May; 8(1):7625. PubMed ID: 29769664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Target specific functions of EPL interneurons in olfactory circuits.
    Liu G; Froudarakis E; Patel JM; Kochukov MY; Pekarek B; Hunt PJ; Patel M; Ung K; Fu CH; Jo J; Lee HK; Tolias AS; Arenkiel BR
    Nat Commun; 2019 Jul; 10(1):3369. PubMed ID: 31358754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of Granule Cell Interneurons by Two Divergent Local Circuit Pathways in the Rat Olfactory Bulb.
    Pressler RT; Strowbridge BW
    J Neurosci; 2020 Dec; 40(50):9701-9714. PubMed ID: 33234611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interneurons produced in adulthood are required for the normal functioning of the olfactory bulb network and for the execution of selected olfactory behaviors.
    Breton-Provencher V; Lemasson M; Peralta MR; Saghatelyan A
    J Neurosci; 2009 Dec; 29(48):15245-57. PubMed ID: 19955377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tbr2 deficiency in mitral and tufted cells disrupts excitatory-inhibitory balance of neural circuitry in the mouse olfactory bulb.
    Mizuguchi R; Naritsuka H; Mori K; Mao CA; Klein WH; Yoshihara Y
    J Neurosci; 2012 Jun; 32(26):8831-44. PubMed ID: 22745484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-frequency oscillations are not necessary for simple olfactory discriminations in young rats.
    Fletcher ML; Smith AM; Best AR; Wilson DA
    J Neurosci; 2005 Jan; 25(4):792-8. PubMed ID: 15673658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leptin modulates olfactory discrimination and neural activity in the olfactory bulb.
    Sun C; Tang K; Wu J; Xu H; Zhang W; Cao T; Zhou Y; Yu T; Li A
    Acta Physiol (Oxf); 2019 Oct; 227(2):e13319. PubMed ID: 31144469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential Impacts of Repeated Sampling on Odor Representations by Genetically-Defined Mitral and Tufted Cell Subpopulations in the Mouse Olfactory Bulb.
    Eiting TP; Wachowiak M
    J Neurosci; 2020 Aug; 40(32):6177-6188. PubMed ID: 32601245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.