These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 35172580)

  • 1. A Hückel Model for the Excited-State Dynamics of a Protein Chromophore Developed Using Photoelectron Imaging.
    Anstöter CS; Verlet JRR
    Acc Chem Res; 2022 May; 55(9):1205-1213. PubMed ID: 35172580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromophores of chromophores: a bottom-up Hückel picture of the excited states of photoactive proteins.
    Anstöter CS; Dean CR; Verlet JRR
    Phys Chem Chem Phys; 2017 Nov; 19(44):29772-29779. PubMed ID: 28937696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photodetachment spectra of deprotonated fluorescent protein chromophore anions.
    Mooney CR; Sanz ME; McKay AR; Fitzmaurice RJ; Aliev AE; Caddick S; Fielding HH
    J Phys Chem A; 2012 Aug; 116(30):7943-9. PubMed ID: 22738202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic structure and dynamics of torsion-locked photoactive yellow protein chromophores.
    Henley A; Diveky ME; Patel AM; Parkes MA; Anderson JC; Fielding HH
    Phys Chem Chem Phys; 2017 Dec; 19(47):31572-31580. PubMed ID: 29165495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum chemistry behind bioimaging: insights from ab initio studies of fluorescent proteins and their chromophores.
    Bravaya KB; Grigorenko BL; Nemukhin AV; Krylov AI
    Acc Chem Res; 2012 Feb; 45(2):265-75. PubMed ID: 21882809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excited-State Proton-Transfer-Induced Trapping Enhances the Fluorescence Emission of a Locked GFP Chromophore.
    Liu XY; Chang XP; Xia SH; Cui G; Thiel W
    J Chem Theory Comput; 2016 Feb; 12(2):753-64. PubMed ID: 26744782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometric and electronic structure probed along the isomerisation coordinate of a photoactive yellow protein chromophore.
    Anstöter CS; Curchod BFE; Verlet JRR
    Nat Commun; 2020 Jun; 11(1):2827. PubMed ID: 32499507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excited state dynamics of the isolated green fluorescent protein chromophore anion following UV excitation.
    West CW; Bull JN; Hudson AS; Cobb SL; Verlet JR
    J Phys Chem B; 2015 Mar; 119(10):3982-7. PubMed ID: 25686152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A photoelectron imaging study of the deprotonated GFP chromophore anion and RNA fluorescent tags.
    Woodhouse JL; Henley A; Lewin R; Ward JM; Hailes HC; Bochenkova AV; Fielding HH
    Phys Chem Chem Phys; 2021 Sep; 23(35):19911-19922. PubMed ID: 34474467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Locally-excited (LE) versus charge-transfer (CT) excited state competition in a series of para-substituted neutral green fluorescent protein (GFP) chromophore models.
    Olsen S
    J Phys Chem B; 2015 Feb; 119(6):2566-75. PubMed ID: 25343562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic structure of the two isomers of the anionic form of p-coumaric acid chromophore.
    Zuev D; Bravaya KB; Crawford TD; Lindh R; Krylov AI
    J Chem Phys; 2011 Jan; 134(3):034310. PubMed ID: 21261356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of microhydration on the electronic structure of the chromophores of the photoactive yellow and green fluorescent proteins.
    Zuev D; Bravaya KB; Makarova MV; Krylov AI
    J Chem Phys; 2011 Nov; 135(19):194304. PubMed ID: 22112079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling radical formation in the photoactive yellow protein chromophore.
    Mooney CR; Parkes MA; Iskra A; Fielding HH
    Angew Chem Int Ed Engl; 2015 May; 54(19):5646-9. PubMed ID: 25782419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast valence to non-valence excited state dynamics in a common anionic chromophore.
    Bull JN; Anstöter CS; Verlet JRR
    Nat Commun; 2019 Dec; 10(1):5820. PubMed ID: 31862884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photophysics of the Blue Light Using Flavin Domain.
    Lukacs A; Tonge PJ; Meech SR
    Acc Chem Res; 2022 Feb; 55(3):402-414. PubMed ID: 35016505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoelectron spectroscopy of the model GFP chromophore anion.
    Horke DA; Verlet JR
    Phys Chem Chem Phys; 2012 Jun; 14(24):8511-5. PubMed ID: 22614441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Photoisomerization on the Photodetachment of the Photoactive Yellow Protein Chromophore.
    Henley A; Patel AM; Parkes MA; Anderson JC; Fielding HH
    J Phys Chem A; 2018 Oct; 122(41):8222-8228. PubMed ID: 30234981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volume-conserving photoisomerization of a nonplanar GFP chromophore derivative: Nonadiabatic dynamics simulation.
    Gao A; Wang M
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 May; 214():86-94. PubMed ID: 30769155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does the wavelength dependent photoisomerization process of the p‑coumaric acid come out from the electronic state dependent pathways?
    Zhao L; Liu J; Zhou P
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 211():203-211. PubMed ID: 30544011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Not All Photoactive Yellow Proteins Are Built Alike: Surprises and Insights into Chromophore Photoisomerization, Protonation, and Thermal Reisomerization of the Photoactive Yellow Protein Isolated from
    Mix LT; Hara M; Fuzell J; Kumauchi M; Kaledhonkar S; Xie A; Hoff WD; Larsen DS
    J Am Chem Soc; 2021 Nov; 143(46):19614-19628. PubMed ID: 34780163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.