These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35173045)

  • 21. High-throughput analysis of mouse embryos by magnetic resonance imaging.
    Bamforth SD; Schneider JE; Bhattacharya S
    Cold Spring Harb Protoc; 2012 Jan; 2012(1):93-101. PubMed ID: 22194264
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of red cell and platelet morphology using an imaging-combined flow cytometer.
    Kubota F
    Clin Lab Haematol; 2003 Apr; 25(2):71-6. PubMed ID: 12641609
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An open-source solution for advanced imaging flow cytometry data analysis using machine learning.
    Hennig H; Rees P; Blasi T; Kamentsky L; Hung J; Dao D; Carpenter AE; Filby A
    Methods; 2017 Jan; 112():201-210. PubMed ID: 27594698
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software.
    Sage D; Pham TA; Babcock H; Lukes T; Pengo T; Chao J; Velmurugan R; Herbert A; Agrawal A; Colabrese S; Wheeler A; Archetti A; Rieger B; Ober R; Hagen GM; Sibarita JB; Ries J; Henriques R; Unser M; Holden S
    Nat Methods; 2019 May; 16(5):387-395. PubMed ID: 30962624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Imaging Cells in Flow Cytometer Using Spatial-Temporal Transformation.
    Han Y; Lo YH
    Sci Rep; 2015 Aug; 5():13267. PubMed ID: 26281956
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A contact-imaging based microfluidic cytometer with machine-learning for single-frame super-resolution processing.
    Huang X; Guo J; Wang X; Yan M; Kang Y; Yu H
    PLoS One; 2014; 9(8):e104539. PubMed ID: 25111497
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting single-cell gene expression profiles of imaging flow cytometry data with machine learning.
    Chlis NK; Rausch L; Brocker T; Kranich J; Theis FJ
    Nucleic Acids Res; 2020 Nov; 48(20):11335-11346. PubMed ID: 33119742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Framework for morphometric classification of cells in imaging flow cytometry.
    Gopakumar G; Jagannadh VK; Gorthi SS; Subrahmanyam GR
    J Microsc; 2016 Mar; 261(3):307-19. PubMed ID: 26469709
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional tissue cytometer based on high-speed multiphoton microscopy.
    Kim KH; Ragan T; Previte MJ; Bahlmann K; Harley BA; Wiktor-Brown DM; Stitt MS; Hendricks CA; Almeida KH; Engelward BP; So PT
    Cytometry A; 2007 Dec; 71(12):991-1002. PubMed ID: 17929292
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single particle 3D reconstruction for 2D crystal images of membrane proteins.
    Scherer S; Arheit M; Kowal J; Zeng X; Stahlberg H
    J Struct Biol; 2014 Mar; 185(3):267-77. PubMed ID: 24382495
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CellTracks TDI: an image cytometer for cell characterization.
    Scholtens TM; Schreuder F; Ligthart ST; Swennenhuis JF; Tibbe AG; Greve J; Terstappen LW
    Cytometry A; 2011 Mar; 79(3):203-13. PubMed ID: 21337699
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-speed cell recognition algorithm for ultrafast flow cytometer imaging system.
    Zhao W; Wang C; Chen H; Chen M; Yang S
    J Biomed Opt; 2018 Apr; 23(4):1-8. PubMed ID: 29623704
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Constructing and optimizing 3D atlases from 2D data with application to the developing mouse brain.
    Young DM; Fazel Darbandi S; Schwartz G; Bonzell Z; Yuruk D; Nojima M; Gole LC; Rubenstein JL; Yu W; Sanders SJ
    Elife; 2021 Feb; 10():. PubMed ID: 33570495
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
    Saunders MJ; Edwards BS; Zhu J; Sklar LA; Graves SW
    Curr Protoc Cytom; 2010 Oct; Chapter 13():Unit 13.12.1-17. PubMed ID: 20938917
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-dimensional Imaging of Bacterial Cells for Accurate Cellular Representations and Precise Protein Localization.
    Bratton BP; Barton B; Morgenstein RM
    J Vis Exp; 2019 Oct; (152):. PubMed ID: 31736495
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ChromoTrace: Computational reconstruction of 3D chromosome configurations for super-resolution microscopy.
    Barton C; Morganella S; Ødegård-Fougner Ø; Alexander S; Ries J; Fitzgerald T; Ellenberg J; Birney E
    PLoS Comput Biol; 2018 Mar; 14(3):e1006002. PubMed ID: 29522506
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimized automated data analysis for the cytokinesis-block micronucleus assay using imaging flow cytometry for high throughput radiation biodosimetry.
    Rodrigues MA; Probst CE; Beaton-Green LA; Wilkins RC
    Cytometry A; 2016 Jul; 89(7):653-62. PubMed ID: 27272602
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-dimensional localization microscopy in live flowing cells.
    Weiss LE; Shalev Ezra Y; Goldberg S; Ferdman B; Adir O; Schroeder A; Alalouf O; Shechtman Y
    Nat Nanotechnol; 2020 Jun; 15(6):500-506. PubMed ID: 32313220
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-throughput imaging flow cytometry by optofluidic time-stretch microscopy.
    Lei C; Kobayashi H; Wu Y; Li M; Isozaki A; Yasumoto A; Mikami H; Ito T; Nitta N; Sugimura T; Yamada M; Yatomi Y; Di Carlo D; Ozeki Y; Goda K
    Nat Protoc; 2018 Jul; 13(7):1603-1631. PubMed ID: 29976951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A parallel microfluidic flow cytometer for high-content screening.
    McKenna BK; Evans JG; Cheung MC; Ehrlich DJ
    Nat Methods; 2011 May; 8(5):401-3. PubMed ID: 21478861
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.