These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35173183)

  • 1. Contagion dynamics in self-organized systems of self-propelled agents.
    Zhao Y; Huepe C; Romanczuk P
    Sci Rep; 2022 Feb; 12(1):2588. PubMed ID: 35173183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How surface and fomite infection affect contagion dynamics: a study with self-propelled particles.
    Ghosh S; Chakraborty A; Bhattacharya S
    Eur Phys J Spec Top; 2022; 231(18-20):3439-3452. PubMed ID: 35035779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phases and homogeneous ordered states in alignment-based self-propelled particle models.
    Zhao Y; Ihle T; Han Z; Huepe C; Romanczuk P
    Phys Rev E; 2021 Oct; 104(4-1):044605. PubMed ID: 34781565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using active matter to introduce spatial heterogeneity to the susceptible infected recovered model of epidemic spreading.
    Forgács P; Libál A; Reichhardt C; Hengartner N; Reichhardt CJO
    Sci Rep; 2022 Jul; 12(1):11229. PubMed ID: 35787642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human mobility and time spent at destination: impact on spatial epidemic spreading.
    Poletto C; Tizzoni M; Colizza V
    J Theor Biol; 2013 Dec; 338():41-58. PubMed ID: 24012488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of heterogeneity on hypergraph contagion models.
    Landry NW; Restrepo JG
    Chaos; 2020 Oct; 30(10):103117. PubMed ID: 33138447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal and athermal three-dimensional swarms of self-propelled particles.
    Nguyen NH; Jankowski E; Glotzer SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011136. PubMed ID: 23005397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding contagion dynamics through microscopic processes in active Brownian particles.
    Norambuena A; Valencia FJ; Guzmán-Lastra F
    Sci Rep; 2020 Nov; 10(1):20845. PubMed ID: 33257706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesoscale pattern formation of self-propelled rods with velocity reversal.
    Großmann R; Peruani F; Bär M
    Phys Rev E; 2016 Nov; 94(5-1):050602. PubMed ID: 27967147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polar patterns of driven filaments.
    Schaller V; Weber C; Semmrich C; Frey E; Bausch AR
    Nature; 2010 Sep; 467(7311):73-7. PubMed ID: 20811454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recalibrating disease parameters for increasing realism in modeling epidemics in closed settings.
    Bioglio L; Génois M; Vestergaard CL; Poletto C; Barrat A; Colizza V
    BMC Infect Dis; 2016 Nov; 16(1):676. PubMed ID: 27842507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The suppression effect of emotional contagion in the COVID-19 pandemic: A multi-layer hybrid modelling and simulation approach.
    Guo X; Tong J; Chen P; Fan W
    PLoS One; 2021; 16(7):e0253579. PubMed ID: 34320025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A metric of influential spreading during contagion dynamics through the air transportation network.
    Nicolaides C; Cueto-Felgueroso L; González MC; Juanes R
    PLoS One; 2012; 7(7):e40961. PubMed ID: 22829902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epidemic spreading on hierarchical geographical networks with mobile agents.
    Han XP; Zhao ZD; Hadzibeganovic T; Wang BH
    Commun Nonlinear Sci Numer Simul; 2014 May; 19(5):1301-1312. PubMed ID: 32288419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple contagion process describes spreading of traffic jams in urban networks.
    Saberi M; Hamedmoghadam H; Ashfaq M; Hosseini SA; Gu Z; Shafiei S; Nair DJ; Dixit V; Gardner L; Waller ST; González MC
    Nat Commun; 2020 Apr; 11(1):1616. PubMed ID: 32265446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase transitions in contagion processes mediated by recurrent mobility patterns.
    Balcan D; Vespignani A
    Nat Phys; 2011 Jul; 7():581-586. PubMed ID: 21799702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-stage effects of awareness cascade on epidemic spreading in multiplex networks.
    Guo Q; Jiang X; Lei Y; Li M; Ma Y; Zheng Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012822. PubMed ID: 25679671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bursty communication patterns facilitate spreading in a threshold-based epidemic dynamics.
    Takaguchi T; Masuda N; Holme P
    PLoS One; 2013; 8(7):e68629. PubMed ID: 23894326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tricritical points in a Vicsek model of self-propelled particles with bounded confidence.
    Romensky M; Lobaskin V; Ihle T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063315. PubMed ID: 25615230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.