These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35173306)

  • 1. Preparation and use of wireless reprogrammable multilateral optogenetic devices for behavioral neuroscience.
    Yang Y; Wu M; Wegener AJ; Vázquez-Guardado A; Efimov AI; Lie F; Wang T; Ma Y; Banks A; Li Z; Xie Z; Huang Y; Good CH; Kozorovitskiy Y; Rogers JA
    Nat Protoc; 2022 Apr; 17(4):1073-1096. PubMed ID: 35173306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics.
    McCall JG; Kim TI; Shin G; Huang X; Jung YH; Al-Hasani R; Omenetto FG; Bruchas MR; Rogers JA
    Nat Protoc; 2013 Dec; 8(12):2413-2428. PubMed ID: 24202555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wireless multilateral devices for optogenetic studies of individual and social behaviors.
    Yang Y; Wu M; Vázquez-Guardado A; Wegener AJ; Grajales-Reyes JG; Deng Y; Wang T; Avila R; Moreno JA; Minkowicz S; Dumrongprechachan V; Lee J; Zhang S; Legaria AA; Ma Y; Mehta S; Franklin D; Hartman L; Bai W; Han M; Zhao H; Lu W; Yu Y; Sheng X; Banks A; Yu X; Donaldson ZR; Gereau RW; Good CH; Xie Z; Huang Y; Kozorovitskiy Y; Rogers JA
    Nat Neurosci; 2021 Jul; 24(7):1035-1045. PubMed ID: 33972800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wireless multi-lateral optofluidic microsystems for real-time programmable optogenetics and photopharmacology.
    Wu Y; Wu M; Vázquez-Guardado A; Kim J; Zhang X; Avila R; Kim JT; Deng Y; Yu Y; Melzer S; Bai Y; Yoon H; Meng L; Zhang Y; Guo H; Hong L; Kanatzidis EE; Haney CR; Waters EA; Banks AR; Hu Z; Lie F; Chamorro LP; Sabatini BL; Huang Y; Kozorovitskiy Y; Rogers JA
    Nat Commun; 2022 Sep; 13(1):5571. PubMed ID: 36137999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and implementation of optofluidic neural probes for in vivo wireless pharmacology and optogenetics.
    McCall JG; Qazi R; Shin G; Li S; Ikram MH; Jang KI; Liu Y; Al-Hasani R; Bruchas MR; Jeong JW; Rogers JA
    Nat Protoc; 2017 Feb; 12(2):219-237. PubMed ID: 28055036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wireless battery free fully implantable multimodal recording and neuromodulation tools for songbirds.
    Ausra J; Munger SJ; Azami A; Burton A; Peralta R; Miller JE; Gutruf P
    Nat Commun; 2021 Mar; 12(1):1968. PubMed ID: 33785751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wireless, battery-free, subdermally implantable platforms for transcranial and long-range optogenetics in freely moving animals.
    Ausra J; Wu M; Zhang X; Vázquez-Guardado A; Skelton P; Peralta R; Avila R; Murickan T; Haney CR; Huang Y; Rogers JA; Kozorovitskiy Y; Gutruf P
    Proc Natl Acad Sci U S A; 2021 Jul; 118(30):. PubMed ID: 34301889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics.
    Samineni VK; Yoon J; Crawford KE; Jeong YR; McKenzie KC; Shin G; Xie Z; Sundaram SS; Li Y; Yang MY; Kim J; Wu D; Xue Y; Feng X; Huang Y; Mickle AD; Banks A; Ha JS; Golden JP; Rogers JA; Gereau RW
    Pain; 2017 Nov; 158(11):2108-2116. PubMed ID: 28700536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wireless Optogenetic Stimulation of Oxytocin Neurons in a Semi-natural Setup Dynamically Elevates Both Pro-social and Agonistic Behaviors.
    Anpilov S; Shemesh Y; Eren N; Harony-Nicolas H; Benjamin A; Dine J; Oliveira VEM; Forkosh O; Karamihalev S; Hüttl RE; Feldman N; Berger R; Dagan A; Chen G; Neumann ID; Wagner S; Yizhar O; Chen A
    Neuron; 2020 Aug; 107(4):644-655.e7. PubMed ID: 32544386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scalable and modular wireless-network infrastructure for large-scale behavioural neuroscience.
    Qazi R; Parker KE; Kim CY; Rill R; Norris MR; Chung J; Bilbily J; Kim JR; Walicki MC; Gereau GB; Lim H; Xiong Y; Lee JR; Tapia MA; Kravitz AV; Will MJ; Ha S; McCall JG; Jeong JW
    Nat Biomed Eng; 2022 Jun; 6(6):771-786. PubMed ID: 34824397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Customizable, wireless and implantable neural probe design and fabrication via 3D printing.
    Parker KE; Lee J; Kim JR; Kawakami C; Kim CY; Qazi R; Jang KI; Jeong JW; McCall JG
    Nat Protoc; 2023 Jan; 18(1):3-21. PubMed ID: 36271159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics.
    Zhang Y; Castro DC; Han Y; Wu Y; Guo H; Weng Z; Xue Y; Ausra J; Wang X; Li R; Wu G; Vázquez-Guardado A; Xie Y; Xie Z; Ostojich D; Peng D; Sun R; Wang B; Yu Y; Leshock JP; Qu S; Su CJ; Shen W; Hang T; Banks A; Huang Y; Radulovic J; Gutruf P; Bruchas MR; Rogers JA
    Proc Natl Acad Sci U S A; 2019 Oct; 116(43):21427-21437. PubMed ID: 31601737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optogenetic Targeting of Mouse Vagal Afferents Using an Organ-specific, Scalable, Wireless Optoelectronic Device.
    Hong S; Kim WS; Han Y; Cherukuri R; Jung H; Campos C; Wu Q; Park SI
    Bio Protoc; 2022 Mar; 12(5):e4341. PubMed ID: 35592610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A wireless, solar-powered, optoelectronic system for spatial restriction-free long-term optogenetic neuromodulations.
    Park J; Kim K; Kim Y; Kim TS; Min IS; Li B; Cho YU; Lee C; Lee JY; Gao Y; Kang K; Kim DH; Choi WJ; Shin HB; Kang HK; Song YM; Cheng H; Cho IJ; Yu KJ
    Sci Adv; 2023 Sep; 9(39):eadi8918. PubMed ID: 37756405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An implantable optogenetic stimulator wirelessly powered by flexible photovoltaics with near-infrared (NIR) light.
    Jeong J; Jung J; Jung D; Kim J; Ju H; Kim T; Lee J
    Biosens Bioelectron; 2021 May; 180():113139. PubMed ID: 33714161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soft subdermal implant capable of wireless battery charging and programmable controls for applications in optogenetics.
    Kim CY; Ku MJ; Qazi R; Nam HJ; Park JW; Nam KS; Oh S; Kang I; Jang JH; Kim WY; Kim JH; Jeong JW
    Nat Commun; 2021 Jan; 12(1):535. PubMed ID: 33483493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves.
    Zhang Y; Mickle AD; Gutruf P; McIlvried LA; Guo H; Wu Y; Golden JP; Xue Y; Grajales-Reyes JG; Wang X; Krishnan S; Xie Y; Peng D; Su CJ; Zhang F; Reeder JT; Vogt SK; Huang Y; Rogers JA; Gereau RW
    Sci Adv; 2019 Jul; 5(7):eaaw5296. PubMed ID: 31281895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible and fully implantable upconversion device for wireless optogenetic stimulation of the spinal cord in behaving animals.
    Wang Y; Xie K; Yue H; Chen X; Luo X; Liao Q; Liu M; Wang F; Shi P
    Nanoscale; 2020 Jan; 12(4):2406-2414. PubMed ID: 31782467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An implantable device for wireless monitoring of diverse physio-behavioral characteristics in freely behaving small animals and interacting groups.
    Ouyang W; Kilner KJ; Xavier RMP; Liu Y; Lu Y; Feller SM; Pitts KM; Wu M; Ausra J; Jones I; Wu Y; Luan H; Trueb J; Higbee-Dempsey EM; Stepien I; Ghoreishi-Haack N; Haney CR; Li H; Kozorovitskiy Y; Heshmati M; Banks AR; Golden SA; Good CH; Rogers JA
    Neuron; 2024 Jun; 112(11):1764-1777.e5. PubMed ID: 38537641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice.
    Montgomery KL; Yeh AJ; Ho JS; Tsao V; Mohan Iyer S; Grosenick L; Ferenczi EA; Tanabe Y; Deisseroth K; Delp SL; Poon AS
    Nat Methods; 2015 Oct; 12(10):969-74. PubMed ID: 26280330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.