BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 35173623)

  • 1. Building Valveless Impedance Pumps From Biological Components: Progress and Challenges.
    Sarvazyan N
    Front Physiol; 2021; 12():770906. PubMed ID: 35173623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Output of a valveless Liebau pump with biologically relevant vessel properties and compression frequencies.
    Davtyan R; Sarvazyan NA
    Sci Rep; 2021 Jun; 11(1):11505. PubMed ID: 34075100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinking and Torsion Can Significantly Improve the Efficiency of Valveless Pumping in Periodically Compressed Tubular Conduits. Implications for Understanding of the Form-Function Relationship of Embryonic Heart Tubes.
    Hiermeier F; Männer J
    J Cardiovasc Dev Dis; 2017 Nov; 4(4):. PubMed ID: 29367548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Liebau phenomenon: a translational approach to new paradigms of CSF circulation and related flow disturbances.
    Longatti P
    Childs Nerv Syst; 2018 Feb; 34(2):227-233. PubMed ID: 29124390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental study of an asymmetric valveless pump to elucidate insights into strategies for pediatric extravascular flow augmentation.
    Anatol J; García-Díaz M; Barrios-Collado C; Moneo-Fernández JA; Horvath M; Parra T; Castro-Ruiz F; Roche ET; Sierra-Pallares J
    Sci Rep; 2022 Dec; 12(1):22165. PubMed ID: 36550224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube.
    Männer J; Wessel A; Yelbuz TM
    Dev Dyn; 2010 Apr; 239(4):1035-46. PubMed ID: 20235196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Equivalent Circuit Modeling for a Valveless Piezoelectric Pump.
    Zhang J; Wang Y; Huang J
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-vitro investigation of a potential wave pumping effect in human aorta.
    Pahlevan NM; Gharib M
    J Biomech; 2013 Sep; 46(13):2122-9. PubMed ID: 23915578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Analysis of a Cardioid Flow Tube Valveless Piezoelectric Pump for Medical Applications.
    Wang J; Zhang F; Gui Z; Wen Y; Zeng Y; Xie T; Tan T; Chen B; Zhang J
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dimensionless analysis of valveless pumping in a thick-wall elastic tube: Application to the tubular embryonic heart.
    Kozlovsky P; Rosenfeld M; Jaffa AJ; Elad D
    J Biomech; 2015 Jun; 48(9):1652-61. PubMed ID: 25835790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research and experimental verification of the characteristics of asymmetric multi-stage fluid guiding body piezoelectric pump.
    He L; Zhang Z; Zhou J; Hu D; Hou Y; Li Q; Cheng G
    Rev Sci Instrum; 2021 Jul; 92(7):075004. PubMed ID: 34340432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parametric analysis of the output performance of a valveless piezoelectric pump with a bullhorn-shaped structure.
    He L; Hu D; Wang J; Zhang Z; Zhou Z; Yu G; Cheng G
    Rev Sci Instrum; 2021 Jul; 92(7):075005. PubMed ID: 34340423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dielectric Elastomer Actuator-Based Valveless Impedance-Driven Pumping for Meso- and Macroscale Applications.
    Benouhiba A; Walter A; Jahren SE; Martinez T; Clavica F; Obrist D; Civet Y; Perriard Y
    Soft Robot; 2024 Apr; 11(2):198-206. PubMed ID: 37729065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on the performance of a valveless piezoelectric pump with a herringbone bluffbody.
    Yu D; Hu R; Huang Y; Hu D; He L; Cheng G
    Rev Sci Instrum; 2023 Apr; 94(4):. PubMed ID: 38081235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavior of a viscoelastic valveless pump: a simple theory with experimental validation.
    Babbs CF
    Biomed Eng Online; 2010 Aug; 9():42. PubMed ID: 20807440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible Electrohydrodynamic Fluid-Driven Valveless Water Pump via Immiscible Interface.
    Mao Z; Hosoya N; Maeda S
    Cyborg Bionic Syst; 2024; 5():0091. PubMed ID: 38318499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical and experimental study of a valveless piezoelectric micropump with high flowrate and pressure load.
    Ni J; Xuan W; Li Y; Chen J; Li W; Cao Z; Dong S; Jin H; Sun L; Luo J
    Microsyst Nanoeng; 2023; 9():72. PubMed ID: 37283782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mathematical model of valveless pumping: a lumped model with time-dependent compliance, resistance, and inertia.
    Jung E
    Bull Math Biol; 2007 Oct; 69(7):2181-98. PubMed ID: 17457651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biohybrid valveless pump-bot powered by engineered skeletal muscle.
    Li Z; Seo Y; Aydin O; Elhebeary M; Kamm RD; Kong H; Saif MTA
    Proc Natl Acad Sci U S A; 2019 Jan; 116(5):1543-1548. PubMed ID: 30635415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-amplitude, short-wave peristalsis and its implications for transport.
    Waldrop L; Miller L
    Biomech Model Mechanobiol; 2016 Jun; 15(3):629-42. PubMed ID: 26239381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.