These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 35173626)
1. Differential Transcriptome Analysis Reveals Genes Related to Low- and High-Temperature Stress in the Fall Armyworm, Vatanparast M; Park Y Front Physiol; 2021; 12():827077. PubMed ID: 35173626 [TBL] [Abstract][Full Text] [Related]
2. Comparative transcriptome analysis of false codling moth, Thaumatotibia leucotreta in response to high and low-temperature treatments. Mwando NL; Khamis FM; Ndlela S; Meyhöfer R; Ombura FLO; Wamalwa M; Subramanian S; Mohamed SA Comp Biochem Physiol Part D Genomics Proteomics; 2024 Jun; 50():101199. PubMed ID: 38330807 [TBL] [Abstract][Full Text] [Related]
3. Comparison of gene expression in the red imported fire ant (Solenopsis invicta) under different temperature conditions. Vatanparast M; Puckett RT; Choi DS; Park Y Sci Rep; 2021 Aug; 11(1):16476. PubMed ID: 34389756 [TBL] [Abstract][Full Text] [Related]
4. Comparative RNA-Seq Analyses of Vatanparast M; Park Y Genes (Basel); 2021 Oct; 12(10):. PubMed ID: 34681004 [No Abstract] [Full Text] [Related]
5. Gene Expression Differences Between Developmental Stages of the Fall Armyworm ( Wang L; Yang Q; Tang R; Liu X; Fan Z; Li J; Price M; Yue B DNA Cell Biol; 2021 Apr; 40(4):580-588. PubMed ID: 33761271 [TBL] [Abstract][Full Text] [Related]
6. Transcriptomic analysis of differentially expressed genes in the oriental armyworm Mythimna separata Walker at different temperatures. Li B; Li M; Wu J; Xu X Comp Biochem Physiol Part D Genomics Proteomics; 2019 Jun; 30():186-195. PubMed ID: 30889494 [TBL] [Abstract][Full Text] [Related]
7. Different development and fecundity between Spodoptera frugiperda USA and China populations, influenced by ecdysone-related genes. Choi DY; Mo HH; Park Y Arch Insect Biochem Physiol; 2024 Jan; 115(1):e22074. PubMed ID: 38288488 [TBL] [Abstract][Full Text] [Related]
8. Transcriptomics and metagenomics of common cutworm (Spodoptera litura) and fall armyworm (Spodoptera frugiperda) demonstrate differences in detoxification and development. Tang R; Liu F; Lan Y; Wang J; Wang L; Li J; Liu X; Fan Z; Guo T; Yue B BMC Genomics; 2022 May; 23(1):388. PubMed ID: 35596140 [TBL] [Abstract][Full Text] [Related]
9. Application of transcriptomic analysis to unveil the toxicity mechanisms of fall armyworm response after exposure to sublethal chlorantraniliprole. Xu L; Zhao J; Xu D; Xu G; Gu Z; Xiao Z; Dewer Y; Zhang Y Ecotoxicol Environ Saf; 2022 Jan; 230():113145. PubMed ID: 34979309 [TBL] [Abstract][Full Text] [Related]
10. Genomic and Transcriptomic Analysis Reveals Cuticular Protein Genes Responding to Different Insecticides in Fall Armyworm Zhu JY; Li L; Xiao KR; He SQ; Gui FR Insects; 2021 Nov; 12(11):. PubMed ID: 34821798 [TBL] [Abstract][Full Text] [Related]
11. De Novo Transcriptomic Analyses Revealed Some Detoxification Genes and Related Pathways Responsive to Noposion Yihaogong Hafeez M; Li X; Zhang Z; Huang J; Wang L; Zhang J; Shah S; Khan MM; Xu F; Fernández-Grandon GM; Zalucki MP; Lu Y Insects; 2021 Feb; 12(2):. PubMed ID: 33546242 [TBL] [Abstract][Full Text] [Related]
12. Deep sequencing-based characterization of transcriptome of Pyrus ussuriensis in response to cold stress. Yang T; Huang XS Gene; 2018 Jun; 661():109-118. PubMed ID: 29580898 [TBL] [Abstract][Full Text] [Related]
13. Genomic and transcriptomic analysis unveils population evolution and development of pesticide resistance in fall armyworm Spodoptera frugiperda. Gui F; Lan T; Zhao Y; Guo W; Dong Y; Fang D; Liu H; Li H; Wang H; Hao R; Cheng X; Li Y; Yang P; Sahu SK; Chen Y; Cheng L; He S; Liu P; Fan G; Lu H; Hu G; Dong W; Chen B; Jiang Y; Zhang Y; Xu H; Lin F; Slippers B; Postma A; Jackson M; Abate BA; Tesfaye K; Demie AL; Bayeleygne MD; Degefu DT; Chen F; Kuria PK; Kinyua ZM; Liu TX; Yang H; Huang F; Liu X; Sheng J; Kang L Protein Cell; 2022 Jul; 13(7):513-531. PubMed ID: 33108584 [TBL] [Abstract][Full Text] [Related]
14. Differential transcriptome analysis reveals genes related to cold tolerance in seabuckthorn carpenter moth, Eogystia hippophaecolus. Cui M; Hu P; Wang T; Tao J; Zong S PLoS One; 2017; 12(11):e0187105. PubMed ID: 29131867 [TBL] [Abstract][Full Text] [Related]
15. Transcriptomic analyses of Pinus koraiensis under different cold stresses. Wang F; Chen S; Liang D; Qu GZ; Chen S; Zhao X BMC Genomics; 2020 Jan; 21(1):10. PubMed ID: 31900194 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress. Shi P; Gu M BMC Plant Biol; 2020 Dec; 20(1):568. PubMed ID: 33380327 [TBL] [Abstract][Full Text] [Related]
17. De novo sequencing and comparative transcriptome analysis of the male and hermaphroditic flowers provide insights into the regulation of flower formation in andromonoecious taihangia rupestris. Li W; Zhang L; Ding Z; Wang G; Zhang Y; Gong H; Chang T; Zhang Y BMC Plant Biol; 2017 Feb; 17(1):54. PubMed ID: 28241786 [TBL] [Abstract][Full Text] [Related]
18. High-throughput transcriptome sequencing analysis provides preliminary insights into the biotransformation mechanism of Rhodopseudomonas palustris treated with alpha-rhamnetin-3-rhamnoside. Bi L; Guan CJ; Yang GE; Yang F; Yan HY; Li QS Microbiol Res; 2016 Apr; 185():1-12. PubMed ID: 26946373 [TBL] [Abstract][Full Text] [Related]
19. RNA-Seq analysis of Clerodendrum inerme (L.) roots in response to salt stress. Xiong Y; Yan H; Liang H; Zhang Y; Guo B; Niu M; Jian S; Ren H; Zhang X; Li Y; Zeng S; Wu K; Zheng F; Teixeira da Silva JA; Ma G BMC Genomics; 2019 Oct; 20(1):724. PubMed ID: 31601194 [TBL] [Abstract][Full Text] [Related]
20. Multi-omics analysis reveal the fall armyworm Spodoptera frugiperda tolerate high temperature by mediating chitin-related genes. Yan X; Zhao Z; Feng S; Zhang Y; Wang Z; Li Z Insect Biochem Mol Biol; 2024 Nov; 174():104192. PubMed ID: 39401552 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]