These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 35173678)
1. Spermine Regulates Immune and Signal Transduction Dysfunction in Diabetic Cardiomyopathy. Wei C; Sun M; Liang X; Che B; Wang N; Shi L; Fan Y Front Endocrinol (Lausanne); 2021; 12():740493. PubMed ID: 35173678 [TBL] [Abstract][Full Text] [Related]
2. Transcriptomics Coupled to Proteomics Reveals Novel Targets for the Protective Role of Spermine in Diabetic Cardiomyopathy. Wei C; Song T; Yuan H; Li X; Zhang X; Liang X; Fan Y Oxid Med Cell Longev; 2022; 2022():5909378. PubMed ID: 35437457 [TBL] [Abstract][Full Text] [Related]
3. Identification of Core Gene Biomarkers in Patients with Diabetic Cardiomyopathy. Li N; Wu H; Geng R; Tang Q Dis Markers; 2018; 2018():6025061. PubMed ID: 30662576 [TBL] [Abstract][Full Text] [Related]
4. Identification of Target Genes and Transcription Factors in Mice with LMNA-Related Dilated Cardiomyopathy by Integrated Bioinformatic Analyses. Zhou H; Tan L; Lu T; Xu K; Li C; Liu Z; Peng H; Shi R; Zhang G Med Sci Monit; 2020 Jun; 26():e924576. PubMed ID: 32581210 [TBL] [Abstract][Full Text] [Related]
5. Gene expression profiling reveals genes and transcription factors associated with dilated and ischemic cardiomyopathies. Qiao A; Zhao Z; Zhang H; Sun Z; Cui X Pathol Res Pract; 2017 May; 213(5):548-557. PubMed ID: 28318762 [TBL] [Abstract][Full Text] [Related]
6. Integrated microarray analysis to identify potential biomarkers and therapeutic targets in dilated cardiomyopathy. Zhang H; Huo J; Jiang W; Shan Q Mol Med Rep; 2020 Aug; 22(2):915-925. PubMed ID: 32626989 [TBL] [Abstract][Full Text] [Related]
7. Potential Mechanisms of Triptolide against Diabetic Cardiomyopathy Based on Network Pharmacology Analysis and Molecular Docking. Zhu N; Huang B; Zhu L; Wang Y J Diabetes Res; 2021; 2021():9944589. PubMed ID: 34926700 [TBL] [Abstract][Full Text] [Related]
8. Sustaining Circulating Regulatory T Cell Subset Contributes to the Therapeutic Effect of Paroxetine on Mice With Diabetic Cardiomyopathy. Han Y; Lai J; Tao J; Tai Y; Zhou W; Guo P; Wang Z; Wang M; Wang Q Circ J; 2020 Aug; 84(9):1587-1598. PubMed ID: 32741881 [TBL] [Abstract][Full Text] [Related]
9. Up-regulation of microRNA-203 inhibits myocardial fibrosis and oxidative stress in mice with diabetic cardiomyopathy through the inhibition of PI3K/Akt signaling pathway via PIK3CA. Yang X; Li X; Lin Q; Xu Q Gene; 2019 Oct; 715():143995. PubMed ID: 31336140 [TBL] [Abstract][Full Text] [Related]
10. Single-cell insights: pioneering an integrated atlas of chromatin accessibility and transcriptomic landscapes in diabetic cardiomyopathy. Su Q; Huang W; Huang Y; Dai R; Chang C; Li QY; Liu H; Li Z; Zhao Y; Wu Q; Pan DG Cardiovasc Diabetol; 2024 Apr; 23(1):139. PubMed ID: 38664790 [TBL] [Abstract][Full Text] [Related]
11. Exogenous spermine attenuates myocardial fibrosis in diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress and the canonical Wnt signaling pathway. Hu J; Lu X; Zhang X; Shao X; Wang Y; Chen J; Zhao B; Li S; Xu C; Wei C Cell Biol Int; 2020 Aug; 44(8):1660-1670. PubMed ID: 32304136 [TBL] [Abstract][Full Text] [Related]
12. Analyzing gene expression profiles in dilated cardiomyopathy via bioinformatics methods. Wang L; Zhu L; Luan R; Wang L; Fu J; Wang X; Sui L Braz J Med Biol Res; 2016 Oct; 49(10):e4897. PubMed ID: 27737314 [TBL] [Abstract][Full Text] [Related]
13. Bioinformatics analyses of significant genes, related pathways and candidate prognostic biomarkers in glioblastoma. Zhou L; Tang H; Wang F; Chen L; Ou S; Wu T; Xu J; Guo K Mol Med Rep; 2018 Nov; 18(5):4185-4196. PubMed ID: 30132538 [TBL] [Abstract][Full Text] [Related]
14. Role of mitochondrial metabolic disorder and immune infiltration in diabetic cardiomyopathy: new insights from bioinformatics analysis. Peng C; Zhang Y; Lang X; Zhang Y J Transl Med; 2023 Feb; 21(1):66. PubMed ID: 36726122 [TBL] [Abstract][Full Text] [Related]
15. Exercise Prevents Cardiac Injury and Improves Mitochondrial Biogenesis in Advanced Diabetic Cardiomyopathy with PGC-1α and Akt Activation. Wang H; Bei Y; Lu Y; Sun W; Liu Q; Wang Y; Cao Y; Chen P; Xiao J; Kong X Cell Physiol Biochem; 2015; 35(6):2159-68. PubMed ID: 25896313 [TBL] [Abstract][Full Text] [Related]
16. Expression profiling of circular RNAs and their potential role in early‑stage diabetic cardiomyopathy. Dong S; Tu C; Ye X; Li L; Zhang M; Xue A; Chen S; Zhao Z; Cong B; Lin J; Shen Y Mol Med Rep; 2020 Sep; 22(3):1958-1968. PubMed ID: 32705182 [TBL] [Abstract][Full Text] [Related]
17. Crucial genes associated with diabetic nephropathy explored by microarray analysis. Wang Z; Wang Z; Zhou Z; Ren Y BMC Nephrol; 2016 Sep; 17(1):128. PubMed ID: 27613243 [TBL] [Abstract][Full Text] [Related]
18. Expression Profile of Inflammation Response Genes and Potential Regulatory Mechanisms in Dilated Cardiomyopathy. Liang L; Sun J; Teng T; Chen L; Li Z; Zhang Z; Gao Y; Zhang W Oxid Med Cell Longev; 2022; 2022():1051652. PubMed ID: 36035223 [TBL] [Abstract][Full Text] [Related]
19. Transcriptomic characterization of adult zebrafish infected with Streptococcus agalactiae. Wu XM; Cao L; Hu YW; Chang MX Fish Shellfish Immunol; 2019 Nov; 94():355-372. PubMed ID: 31533079 [TBL] [Abstract][Full Text] [Related]
20. Exploring the Communal Pathogenesis, Ferroptosis Mechanism, and Potential Therapeutic Targets of Dilated Cardiomyopathy and Hypertrophic Cardiomyopathy Wang Z; Xia Q; Su W; Cao M; Sun Y; Zhang M; Chen W; Jiang T Front Cardiovasc Med; 2022; 9():824756. PubMed ID: 35282347 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]