These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Hyperoxic Exposure of Immature Mice Increases the Inflammatory Response to Subsequent Rhinovirus Infection: Association with Danger Signals. Cui TX; Maheshwer B; Hong JY; Goldsmith AM; Bentley JK; Popova AP J Immunol; 2016 Jun; 196(11):4692-705. PubMed ID: 27183577 [TBL] [Abstract][Full Text] [Related]
4. Early-life hyperoxia-induced Flt3L drives neonatal lung dendritic cell expansion and proinflammatory responses. Cui TX; Brady AE; Zhang YJ; Fulton CT; Goldsmith AM; Popova AP Front Immunol; 2023; 14():1116675. PubMed ID: 36845082 [TBL] [Abstract][Full Text] [Related]
5. Treatment with Geranylgeranylacetone Induces Heat Shock Protein 70 and Attenuates Neonatal Hyperoxic Lung Injury in a Model of Bronchopulmonary Dysplasia. Tokuriki S; Igarashi A; Okuno T; Ohta G; Naiki H; Ohshima Y Lung; 2017 Aug; 195(4):469-476. PubMed ID: 28447205 [TBL] [Abstract][Full Text] [Related]
6. Quercetin attenuates the hyperoxic lung injury in neonatal mice: Implications for Bronchopulmonary dysplasia (BPD). Maturu P; Wei-Liang Y; Androutsopoulos VP; Jiang W; Wang L; Tsatsakis AM; Couroucli XI Food Chem Toxicol; 2018 Apr; 114():23-33. PubMed ID: 29432836 [TBL] [Abstract][Full Text] [Related]
7. IL-17a-producing γδT cells and NKG2D signaling mediate bacterial endotoxin-induced neonatal lung injury: implications for bronchopulmonary dysplasia. Cui TX; Brady AE; Zhang YJ; Anderson C; Popova AP Front Immunol; 2023; 14():1156842. PubMed ID: 37744375 [TBL] [Abstract][Full Text] [Related]
8. Loss of microRNA-30a and sex-specific effects on the neonatal hyperoxic lung injury. Grimm SL; Reddick S; Dong X; Leek C; Wang AX; Gutierrez MC; Hartig SM; Moorthy B; Coarfa C; Lingappan K Biol Sex Differ; 2023 Aug; 14(1):50. PubMed ID: 37553579 [TBL] [Abstract][Full Text] [Related]
9. Prenatal administration of the cytochrome P4501A inducer, Β-naphthoflavone (BNF), attenuates hyperoxic lung injury in newborn mice: implications for bronchopulmonary dysplasia (BPD) in premature infants. Couroucli XI; Liang YH; Jiang W; Wang L; Barrios R; Yang P; Moorthy B Toxicol Appl Pharmacol; 2011 Oct; 256(2):83-94. PubMed ID: 21745492 [TBL] [Abstract][Full Text] [Related]
10. Neonatal periostin knockout mice are protected from hyperoxia-induced alveolar simplication. Bozyk PD; Bentley JK; Popova AP; Anyanwu AC; Linn MD; Goldsmith AM; Pryhuber GS; Moore BB; Hershenson MB PLoS One; 2012; 7(2):e31336. PubMed ID: 22363622 [TBL] [Abstract][Full Text] [Related]
11. Suppression of inflammatory cell trafficking and alveolar simplification by the heme oxygenase-1 product carbon monoxide. Anyanwu AC; Bentley JK; Popova AP; Malas O; Alghanem H; Goldsmith AM; Hershenson MB; Pinsky DJ Am J Physiol Lung Cell Mol Physiol; 2014 Apr; 306(8):L749-63. PubMed ID: 24532288 [TBL] [Abstract][Full Text] [Related]
12. Genipin attenuates hyperoxia-induced lung injury and pulmonary hypertension via targeting glycogen synthase kinase-3 β in neonatal rats. Li J; Shi J; Li P; Guo X; Wang T; Liu A Nutrition; 2019 Jan; 57():237-244. PubMed ID: 30196116 [TBL] [Abstract][Full Text] [Related]
13. Neonatal hyperoxia increases airway reactivity and inflammation in adult mice. Kumar VH; Lakshminrusimha S; Kishkurno S; Paturi BS; Gugino SF; Nielsen L; Wang H; Ryan RM Pediatr Pulmonol; 2016 Nov; 51(11):1131-1141. PubMed ID: 27116319 [TBL] [Abstract][Full Text] [Related]
14. [Anti-inflammatory effects of erythropoietin on hyperoxia-induced bronchopulmonary dysplasia in newborn rats]. Wang XL; Xue XD Zhonghua Er Ke Za Zhi; 2009 Jun; 47(6):446-51. PubMed ID: 19951473 [TBL] [Abstract][Full Text] [Related]
15. Reduced platelet-derived growth factor receptor expression is a primary feature of human bronchopulmonary dysplasia. Popova AP; Bentley JK; Cui TX; Richardson MN; Linn MJ; Lei J; Chen Q; Goldsmith AM; Pryhuber GS; Hershenson MB Am J Physiol Lung Cell Mol Physiol; 2014 Aug; 307(3):L231-9. PubMed ID: 24907056 [TBL] [Abstract][Full Text] [Related]
16. The Effect of Continuous Positive Airway Pressure in a Mouse Model of Hyperoxic Neonatal Lung Injury. Reyburn B; Di Fiore JM; Raffay T; Martin RJ; Prakash YS; Jafri A; MacFarlane PM Neonatology; 2016; 109(1):6-13. PubMed ID: 26394387 [TBL] [Abstract][Full Text] [Related]
17. Furin Regulates the Alveolarization of Neonatal Lungs in a Mouse Model of Hyperoxic Lung Injury. Kato S; Iwata O; Kato H; Fukaya S; Imai Y; Saitoh S Biomolecules; 2023 Nov; 13(11):. PubMed ID: 38002338 [TBL] [Abstract][Full Text] [Related]
18. Hypoxic stress exacerbates hyperoxia-induced lung injury in a neonatal mouse model of bronchopulmonary dysplasia. Ratner V; Slinko S; Utkina-Sosunova I; Starkov A; Polin RA; Ten VS Neonatology; 2009; 95(4):299-305. PubMed ID: 19052476 [TBL] [Abstract][Full Text] [Related]
19. Pigment epithelium-derived factor mediates impaired lung vascular development in neonatal hyperoxia. Chetty A; Bennett M; Dang L; Nakamura D; Cao GJ; Mujahid S; Volpe M; Herman I; Becerra SP; Nielsen HC Am J Respir Cell Mol Biol; 2015 Mar; 52(3):295-303. PubMed ID: 25054647 [TBL] [Abstract][Full Text] [Related]
20. Endothelial to mesenchymal transition during neonatal hyperoxia-induced pulmonary hypertension. Gong J; Feng Z; Peterson AL; Carr JF; Vang A; Braza J; Choudhary G; Dennery PA; Yao H J Pathol; 2020 Dec; 252(4):411-422. PubMed ID: 32815166 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]