These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 35173908)
1. Automated data extraction of electronic medical records: Validity of data mining to construct research databases for eligibility in gastroenterological clinical trials. Joseph N; Lindblad I; Zaker S; Elfversson S; Albinzon M; Ødegård Ø; Hantler L; Hellström PM Ups J Med Sci; 2022; 127():. PubMed ID: 35173908 [TBL] [Abstract][Full Text] [Related]
2. Automated data extraction--a feasible way to construct patient registers of primary care utilization. Martinell M; Stålhammar J; Hallqvist J Ups J Med Sci; 2012 Mar; 117(1):52-6. PubMed ID: 22335391 [TBL] [Abstract][Full Text] [Related]
3. Accuracy of claim data in the identification and classification of adults with congenital heart diseases in electronic medical records. Cohen S; Jannot AS; Iserin L; Bonnet D; Burgun A; Escudié JB Arch Cardiovasc Dis; 2019 Jan; 112(1):31-43. PubMed ID: 30612895 [TBL] [Abstract][Full Text] [Related]
4. Text-mining in electronic healthcare records can be used as efficient tool for screening and data collection in cardiovascular trials: a multicenter validation study. van Dijk WB; Fiolet ATL; Schuit E; Sammani A; Groenhof TKJ; van der Graaf R; de Vries MC; Alings M; Schaap J; Asselbergs FW; Grobbee DE; Groenwold RHH; Mosterd A J Clin Epidemiol; 2021 Apr; 132():97-105. PubMed ID: 33248277 [TBL] [Abstract][Full Text] [Related]
5. Extracting information from the text of electronic medical records to improve case detection: a systematic review. Ford E; Carroll JA; Smith HE; Scott D; Cassell JA J Am Med Inform Assoc; 2016 Sep; 23(5):1007-15. PubMed ID: 26911811 [TBL] [Abstract][Full Text] [Related]
6. Challenges of Using ICD-9-CM and ICD-10-CM Codes for Soft-Tissue Sarcoma in Databases for Health Services Research. Hess LM; Zhu YE; Sugihara T; Fang Y; Collins N; Nicol S Perspect Health Inf Manag; 2019; 16(Spring):1a. PubMed ID: 31019431 [TBL] [Abstract][Full Text] [Related]
7. [A customized method for information extraction from unstructured text data in the electronic medical records]. Bao XY; Huang WJ; Zhang K; Jin M; Li Y; Niu CZ Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Apr; 50(2):256-263. PubMed ID: 29643524 [TBL] [Abstract][Full Text] [Related]
8. Using text mining to extract depressive symptoms and to validate the diagnosis of major depressive disorder from electronic health records. Wu CS; Kuo CJ; Su CH; Wang SH; Dai HJ J Affect Disord; 2020 Jan; 260():617-623. PubMed ID: 31541973 [TBL] [Abstract][Full Text] [Related]
9. An eClinical trial system for cancer that integrates with clinical pathways and electronic medical records. Yamamoto K; Yamanaka K; Hatano E; Sumi E; Ishii T; Taura K; Iguchi K; Teramukai S; Yokode M; Uemoto S; Fukushima M Clin Trials; 2012 Aug; 9(4):408-17. PubMed ID: 22605791 [TBL] [Abstract][Full Text] [Related]
10. Text Mining in Electronic Medical Records Enables Quick and Efficient Identification of Pregnancy Cases Occurring After Breast Cancer. Labrosse J; Lam T; Sebbag C; Benque M; Abdennebi I; Merckelbagh H; Osdoit M; Priour M; Guerin J; Balezeau T; Grandal B; Coussy F; Bobrie A; Ferrer L; Laas E; Feron JG; Reyal F; Hamy AS JCO Clin Cancer Inform; 2019 Oct; 3():1-12. PubMed ID: 31626565 [TBL] [Abstract][Full Text] [Related]
11. Development and validation of a heart failure with preserved ejection fraction cohort using electronic medical records. Patel YR; Robbins JM; Kurgansky KE; Imran T; Orkaby AR; McLean RR; Ho YL; Cho K; Michael Gaziano J; Djousse L; Gagnon DR; Joseph J BMC Cardiovasc Disord; 2018 Jun; 18(1):128. PubMed ID: 29954337 [TBL] [Abstract][Full Text] [Related]
12. [Evaluation of electronic medical records from general practices using the example of the diagnosis of community-acquired pneumonia: A qualitative feasibility study]. Söhl K; Wolf F; Kuniß N; Sommer M; Tetmeyer R; Bleidorn J; Böde M Z Evid Fortbild Qual Gesundhwes; 2024 Apr; 185():54-63. PubMed ID: 38388279 [TBL] [Abstract][Full Text] [Related]
13. An empirical evaluation of supervised learning approaches in assigning diagnosis codes to electronic medical records. Kavuluru R; Rios A; Lu Y Artif Intell Med; 2015 Oct; 65(2):155-66. PubMed ID: 26054428 [TBL] [Abstract][Full Text] [Related]
14. Neural transfer learning for assigning diagnosis codes to EMRs. Rios A; Kavuluru R Artif Intell Med; 2019 May; 96():116-122. PubMed ID: 31164204 [TBL] [Abstract][Full Text] [Related]
15. Combining structured and unstructured data in EMRs to create clinically-defined EMR-derived cohorts. Tam CS; Gullick J; Saavedra A; Vernon ST; Figtree GA; Chow CK; Cretikos M; Morris RW; William M; Morris J; Brieger D BMC Med Inform Decis Mak; 2021 Mar; 21(1):91. PubMed ID: 33685456 [TBL] [Abstract][Full Text] [Related]
16. Utility of linking primary care electronic medical records with Canadian census data to study the determinants of chronic disease: an example based on socioeconomic status and obesity. Biro S; Williamson T; Leggett JA; Barber D; Morkem R; Moore K; Belanger P; Mosley B; Janssen I BMC Med Inform Decis Mak; 2016 Mar; 16():32. PubMed ID: 26969124 [TBL] [Abstract][Full Text] [Related]
17. Measuring data reliability for preventive services in electronic medical records. Greiver M; Barnsley J; Glazier RH; Harvey BJ; Moineddin R BMC Health Serv Res; 2012 May; 12():116. PubMed ID: 22583552 [TBL] [Abstract][Full Text] [Related]
18. A method for cohort selection of cardiovascular disease records from an electronic health record system. Abrahão MTF; Nobre MRC; Gutierrez MA Int J Med Inform; 2017 Jun; 102():138-149. PubMed ID: 28495342 [TBL] [Abstract][Full Text] [Related]
19. Stroke Outcome Measurements From Electronic Medical Records: Cross-sectional Study on the Effectiveness of Neural and Nonneural Classifiers. Zanotto BS; Beck da Silva Etges AP; Dal Bosco A; Cortes EG; Ruschel R; De Souza AC; Andrade CMV; Viegas F; Canuto S; Luiz W; Ouriques Martins S; Vieira R; Polanczyk C; André Gonçalves M JMIR Med Inform; 2021 Nov; 9(11):e29120. PubMed ID: 34723829 [TBL] [Abstract][Full Text] [Related]
20. Identifying phenotypic signatures of neuropsychiatric disorders from electronic medical records. Lyalina S; Percha B; LePendu P; Iyer SV; Altman RB; Shah NH J Am Med Inform Assoc; 2013 Dec; 20(e2):e297-305. PubMed ID: 23956017 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]