BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35173936)

  • 1. Control of the Cu morphology on Ru-passivated and Ru-doped TaN surfaces - promoting growth of 2D conducting copper for CMOS interconnects.
    Nies CL; Natarajan SK; Nolan M
    Chem Sci; 2022 Jan; 13(3):713-725. PubMed ID: 35173936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of Ru passivation and doping on the barrier and seed layer properties of Ru-modified TaN for copper interconnects.
    Kondati Natarajan S; Nies CL; Nolan M
    J Chem Phys; 2020 Apr; 152(14):144701. PubMed ID: 32295379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal stability of atomic layer deposited Ru layer on Si and TaN/Si for barrier application of Cu interconnection.
    Shin DC; Kim MR; Lee JH; Choi BH; Lee HK
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5631-7. PubMed ID: 22966623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seedless Cu Electroplating on Ru-W Thin Films for Metallisation of Advanced Interconnects.
    Santos RF; Oliveira BMC; Savaris LCG; Ferreira PJ; Vieira MF
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Formation of a Ru/ZnO Multifunctional Bilayer for the Next-Generation Interconnect Technology via Area-Selective Atomic Layer Deposition.
    Mori Y; Cheon T; Kotsugi Y; Kim YH; Park Y; Ansari MZ; Mohapatra D; Jang Y; Bae JS; Kwon W; Kim G; Park YB; Lee HB; Song W; Kim SH
    Small; 2023 Aug; 19(34):e2300290. PubMed ID: 37127866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Properties of Cu Thin Films on Ru Depending on the ALD Temperature.
    Yoon HC; Shin JH; Park HS; Suh SJ
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1601-4. PubMed ID: 26353698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effect of Ultrasonic Agitation on the Seedless Growth of Cu on Ru-W Thin Films.
    Santos RF; Oliveira BMC; Ferreira PJ; Vieira MF
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seedless Cu Electroplating on Co-W Thin Films in Low pH Electrolyte: Early Stages of Formation.
    Santos RF; Oliveira BMC; Chícharo A; Alpuim P; Ferreira PJ; Simões S; Viana F; Vieira MF
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of Co and Ru nanocluster morphology on 2D MoS
    Nies CL; Nolan M
    Beilstein J Nanotechnol; 2021; 12():704-724. PubMed ID: 34354899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanometer-thick copper films with low resistivity grown on 2D material surfaces.
    Liu YW; Zhang DJ; Tsai PC; Chiang CT; Tu WC; Lin SY
    Sci Rep; 2022 Feb; 12(1):1823. PubMed ID: 35110664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topological Metal MoP Nanowire for Interconnect.
    Han HJ; Kumar S; Jin G; Ji X; Hart JL; Hynek DJ; Sam QP; Hasse V; Felser C; Cahill DG; Sundararaman R; Cha JJ
    Adv Mater; 2023 Mar; 35(13):e2208965. PubMed ID: 36745845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct-Liquid-Evaporation Chemical Vapor Deposition of Nanocrystalline Cobalt Metal for Nanoscale Copper Interconnect Encapsulation.
    Feng J; Gong X; Lou X; Gordon RG
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):10914-10920. PubMed ID: 28266209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing Interconnect Reliability and Performance by Converting Tantalum to 2D Layered Tantalum Sulfide at Low Temperature.
    Lo CL; Catalano M; Khosravi A; Ge W; Ji Y; Zemlyanov DY; Wang L; Addou R; Liu Y; Wallace RM; Kim MJ; Chen Z
    Adv Mater; 2019 Jul; 31(30):e1902397. PubMed ID: 31183907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Stability of Diffusion Barriers in Cu/Ru/MgO/Ta/Si.
    Hsieh SH; Chen WJ; Chien CM
    Nanomaterials (Basel); 2015 Nov; 5(4):1840-1852. PubMed ID: 28347099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superconformal Film Growth: From Smoothing Surfaces to Interconnect Technology.
    Moffat TP; Braun TM; Raciti D; Josell D
    Acc Chem Res; 2023 May; 56(9):1004-1017. PubMed ID: 37076974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-W Barrier Layers for Metallization of Copper Interconnects: Thermal Performance Analysis.
    Oliveira BMC; Santos RF; Piedade AP; Ferreira PJ; Vieira MF
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification and Characterization of Interfacial Bonding for Thermal Management of Ruthenium Interconnects in Next-Generation Very-Large-Scale Integration Circuits.
    Zhan T; Sahara K; Takeuchi H; Yokogawa R; Oda K; Jin Z; Deng S; Tomita M; Wu YJ; Xu Y; Matsuki T; Wang H; Song M; Guan S; Ogura A; Watanabe T
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):7392-7404. PubMed ID: 35099170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in Barrier Layer of Cu Interconnects.
    Li Z; Tian Y; Teng C; Cao H
    Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33182434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amorphous Ta
    An BS; Kwon Y; Oh JS; Lee M; Pae S; Yang CW
    Sci Rep; 2019 Dec; 9(1):20132. PubMed ID: 31882921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural, Optical, and Electronic Properties of Cu-Doped TiN
    Baron FA; Mikhlin YL; Molokeev MS; Rautskiy MV; Tarasov IA; Volochaev MN; Shanidze LV; Lukyanenko AV; Smolyarova TE; Konovalov SO; Zelenov FV; Tarasov AS; Volkov NV
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32531-32541. PubMed ID: 34181393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.