These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35173948)

  • 1. Synthesis, characterization and computational evaluation of bicyclooctadienes towards molecular solar thermal energy storage.
    Quant M; Hillers-Bendtsen AE; Ghasemi S; Erdelyi M; Wang Z; Muhammad LM; Kann N; Mikkelsen KV; Moth-Poulsen K
    Chem Sci; 2022 Jan; 13(3):834-841. PubMed ID: 35173948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low Molecular Weight Norbornadiene Derivatives for Molecular Solar-Thermal Energy Storage.
    Quant M; Lennartson A; Dreos A; Kuisma M; Erhart P; Börjesson K; Moth-Poulsen K
    Chemistry; 2016 Sep; 22(37):13265-74. PubMed ID: 27492997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of Norbornadiene/Quadricyclane Photoswitches for Molecular Solar Thermal Energy Storage Applications.
    Orrego-Hernández J; Dreos A; Moth-Poulsen K
    Acc Chem Res; 2020 Aug; 53(8):1478-1487. PubMed ID: 32662627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel route to enhance the thermo-optical performance of bicyclic diene photoswitches for solar thermal batteries.
    Sangolkar AA; Kadiyam RK; Pawar R
    Beilstein J Org Chem; 2024; 20():1053-1068. PubMed ID: 38774273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational investigation of photoswitch conjugates for molecular solar energy storage.
    Elholm JL; Liasi Z; Mikkelsen MK; Hillers-Bendtsen AE; Mikkelsen KV
    Phys Chem Chem Phys; 2023 Aug; 25(33):21964-21969. PubMed ID: 37554092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Norbornadiene-Quadricyclane Photoswitches with Enhanced Solar Spectrum Match.
    Aslam AS; Muhammad LM; Erbs Hillers-Bendtsen A; Mikkelsen KV; Moth-Poulsen K
    Chemistry; 2024 Aug; 30(46):e202401430. PubMed ID: 38825835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Push-Pull Bis-Norbornadienes for Solar Thermal Energy Storage.
    Weber RR; Stindt CN; van der Harten AMJ; Feringa BL
    Chemistry; 2024 Jun; 30(35):e202400482. PubMed ID: 38519425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solar Energy Storage by Molecular Norbornadiene-Quadricyclane Photoswitches: Polymer Film Devices.
    Petersen AU; Hofmann AI; Fillols M; Mansø M; Jevric M; Wang Z; Sumby CJ; Müller C; Moth-Poulsen K
    Adv Sci (Weinh); 2019 Jun; 6(12):1900367. PubMed ID: 31380172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Solar Thermal Batteries through Combination of Magnetic Nanoparticle Catalysts and Tailored Norbornadiene Photoswitches.
    Lorenz P; Luchs T; Hirsch A
    Chemistry; 2021 Mar; 27(15):4993-5002. PubMed ID: 33449419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of Solvent Effects on the Molecular Energy Storage and Optical Properties of Bicyclooctadiene/Tetracyclooctane Photoswitches.
    Hillers-Bendtsen AE; Zhou Y; Mikkelsen KV
    J Phys Chem A; 2024 Jan; 128(1):41-50. PubMed ID: 38152898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular solar thermal energy storage in photoswitch oligomers increases energy densities and storage times.
    Mansø M; Petersen AU; Wang Z; Erhart P; Nielsen MB; Moth-Poulsen K
    Nat Commun; 2018 May; 9(1):1945. PubMed ID: 29769524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Tuning of Photoswitches for Solar Energy Storage.
    Losantos R; Sampedro D
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34206445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of Norbornadiene Compounds for Solar Thermal Storage by First-Principles Calculations.
    Kuisma M; Lundin A; Moth-Poulsen K; Hyldgaard P; Erhart P
    ChemSusChem; 2016 Jul; 9(14):1786-94. PubMed ID: 27254282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High throughput screening of norbornadiene/quadricyclane derivates for molecular solar thermal energy storage.
    Elholm JL; Hillers-Bendtsen AE; Hölzel H; Moth-Poulsen K; Mikkelsen KV
    Phys Chem Chem Phys; 2022 Dec; 24(47):28956-28964. PubMed ID: 36416497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual screening of norbornadiene-based molecular solar thermal energy storage systems using a genetic algorithm.
    Ree N; Koerstz M; Mikkelsen KV; Jensen JH
    J Chem Phys; 2021 Nov; 155(18):184105. PubMed ID: 34773961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Searching the Chemical Space of Bicyclic Dienes for Molecular Solar Thermal Energy Storage Candidates.
    Hillers-Bendtsen AE; Elholm JL; Obel OB; Hölzel H; Moth-Poulsen K; Mikkelsen KV
    Angew Chem Int Ed Engl; 2023 Oct; 62(40):e202309543. PubMed ID: 37489860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the Structural and Thermochemical Properties of [2.2.2]-Bicyclooctadiene Photoswitches.
    Hillers-Bendtsen AE; Quant M; Moth-Poulsen K; Mikkelsen KV
    J Phys Chem A; 2021 Dec; 125(48):10330-10339. PubMed ID: 34809434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bis- and Tris-norbornadienes with High Energy Densities for Efficient Molecular Solar Thermal Energy Storage.
    Schulte R; Afflerbach S; Paululat T; Ihmels H
    Angew Chem Int Ed Engl; 2023 Sep; 62(38):e202309544. PubMed ID: 37504899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Norbornadiene-Based Photoswitches with Exceptional Combination of Solar Spectrum Match and Long-Term Energy Storage.
    Jevric M; Petersen AU; Mansø M; Kumar Singh S; Wang Z; Dreos A; Sumby C; Nielsen MB; Börjesson K; Erhart P; Moth-Poulsen K
    Chemistry; 2018 Sep; 24(49):12767-12772. PubMed ID: 29978927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Taking up the quest for novel molecular solar thermal systems: Pros and cons of storing energy with cubane and cubadiene.
    Merino-Robledillo C; Marazzi M
    Front Chem; 2023; 11():1171848. PubMed ID: 37123877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.