BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 35174479)

  • 1. Current challenges in the treatment of cardiac fibrosis: Recent insights into the sex-specific differences of glucose-lowering therapies on the diabetic heart: IUPHAR Review 33.
    Sharma A; De Blasio M; Ritchie R
    Br J Pharmacol; 2023 Nov; 180(22):2916-2933. PubMed ID: 35174479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Therapeutic targets of fibrosis: Translational advances and current challenges.
    De Blasio MJ; Ohlstein EH; Ritchie RH
    Br J Pharmacol; 2023 Nov; 180(22):2839-2845. PubMed ID: 37846458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preclinical rodent models of cardiac fibrosis.
    Wang Y; Wang M; Samuel CS; Widdop RE
    Br J Pharmacol; 2022 Mar; 179(5):882-899. PubMed ID: 33973236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FT011, a new anti-fibrotic drug, attenuates fibrosis and chronic heart failure in experimental diabetic cardiomyopathy.
    Zhang Y; Edgley AJ; Cox AJ; Powell AK; Wang B; Kompa AR; Stapleton DI; Zammit SC; Williams SJ; Krum H; Gilbert RE; Kelly DJ
    Eur J Heart Fail; 2012 May; 14(5):549-62. PubMed ID: 22417655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progress in the treatment of diabetic cardiomyopathy, a systematic review.
    Shou Y; Li X; Fang Q; Xie A; Zhang Y; Fu X; Wang M; Gong W; Zhang X; Yang D
    Pharmacol Res Perspect; 2024 Apr; 12(2):e1177. PubMed ID: 38407563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathophysiology and Treatment of Diabetic Cardiomyopathy and Heart Failure in Patients with Diabetes Mellitus.
    Nakamura K; Miyoshi T; Yoshida M; Akagi S; Saito Y; Ejiri K; Matsuo N; Ichikawa K; Iwasaki K; Naito T; Namba Y; Yoshida M; Sugiyama H; Ito H
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a mouse model of obesity-related fibrotic cardiomyopathy that recapitulates features of human heart failure with preserved ejection fraction.
    Alex L; Russo I; Holoborodko V; Frangogiannis NG
    Am J Physiol Heart Circ Physiol; 2018 Oct; 315(4):H934-H949. PubMed ID: 30004258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reverse remodeling in diabetic cardiomyopathy: the role of extracellular matrix.
    Aykac I; Podesser BK; Kiss A
    Minerva Cardiol Angiol; 2022 Jun; 70(3):385-392. PubMed ID: 34713679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Argatroban Attenuates Diabetic Cardiomyopathy in Rats by Reducing Fibrosis, Inflammation, Apoptosis, and Protease-Activated Receptor Expression.
    Bulani Y; Sharma SS
    Cardiovasc Drugs Ther; 2017 Jun; 31(3):255-267. PubMed ID: 28695302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanisms of cardiac pathology in diabetes - Experimental insights.
    Varma U; Koutsifeli P; Benson VL; Mellor KM; Delbridge LMD
    Biochim Biophys Acta Mol Basis Dis; 2018 May; 1864(5 Pt B):1949-1959. PubMed ID: 29109032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic liver diseases: From development to novel pharmacological therapies: IUPHAR Review 37.
    Borrello MT; Mann D
    Br J Pharmacol; 2023 Nov; 180(22):2880-2897. PubMed ID: 35393658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of hyperglycaemia in the development of diabetic cardiomyopathy.
    El Hayek MS; Ernande L; Benitah JP; Gomez AM; Pereira L
    Arch Cardiovasc Dis; 2021 Nov; 114(11):748-760. PubMed ID: 34627704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of peroxisome proliferator-activated receptor-α on diabetic cardiomyopathy.
    Wang L; Cai Y; Jian L; Cheung CW; Zhang L; Xia Z
    Cardiovasc Diabetol; 2021 Jan; 20(1):2. PubMed ID: 33397369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiovascular characterisation of a novel mouse model that combines hypertension and diabetes co-morbidities.
    Sharma A; Choi JSY; Watson AMD; Li L; Sonntag T; Lee MKS; Murphy AJ; De Blasio M; Head GA; Ritchie RH; de Haan JB
    Sci Rep; 2023 May; 13(1):8741. PubMed ID: 37253814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of Cardiac Fibrosis in Diabetic Cardiomyopathy: From Pathophysiology to Clinical Diagnostic Tools.
    Pan KL; Hsu YC; Chang ST; Chung CM; Lin CL
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37239956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical Approach to Diabetic Cardiomyopathy: A Review of Human Studies.
    Tarquini R; Pala L; Brancati S; Vannini G; De Cosmo S; Mazzoccoli G; Rotella CM
    Curr Med Chem; 2018; 25(13):1510-1524. PubMed ID: 28685679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene therapy targeting cardiac phosphoinositide 3-kinase (p110α) attenuates cardiac remodeling in type 2 diabetes.
    Prakoso D; De Blasio MJ; Tate M; Kiriazis H; Donner DG; Qian H; Nash D; Deo M; Weeks KL; Parry LJ; Gregorevic P; McMullen JR; Ritchie RH
    Am J Physiol Heart Circ Physiol; 2020 Apr; 318(4):H840-H852. PubMed ID: 32142359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting cluster of differentiation 26 / dipeptidyl peptidase 4 (CD26/DPP4) in organ fibrosis.
    Ohm B; Moneke I; Jungraithmayr W
    Br J Pharmacol; 2023 Nov; 180(22):2846-2861. PubMed ID: 36196001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding One Half of the Sex Difference Equation: The Modulatory Effects of Testosterone on Diabetic Cardiomyopathy.
    Visanji M; Venegas-Pino DE; Werstuck GH
    Am J Pathol; 2024 Apr; 194(4):551-561. PubMed ID: 38061627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liraglutide alleviates cardiac fibrosis through inhibiting P4hα-1 expression in STZ-induced diabetic cardiomyopathy.
    Zhao T; Chen H; Xu F; Wang J; Liu Y; Xing X; Guo L; Zhang M; Lu Q
    Acta Biochim Biophys Sin (Shanghai); 2019 Mar; 51(3):293-300. PubMed ID: 30883649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.