These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35174569)

  • 1. Shining Light on Polymeric Drug Nanocarriers with Fluorescence Correlation Spectroscopy.
    Schmitt S; Nuhn L; Barz M; Butt HJ; Koynov K
    Macromol Rapid Commun; 2022 Jun; 43(12):e2100892. PubMed ID: 35174569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence Correlation Spectroscopy Monitors the Fate of Degradable Nanocarriers in the Blood Stream.
    Schmitt S; Huppertsberg A; Klefenz A; Kaps L; Mailänder V; Schuppan D; Butt HJ; Nuhn L; Koynov K
    Biomacromolecules; 2022 Mar; 23(3):1065-1074. PubMed ID: 35061359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring drug nanocarriers in human blood by near-infrared fluorescence correlation spectroscopy.
    Negwer I; Best A; Schinnerer M; Schäfer O; Capeloa L; Wagner M; Schmidt M; Mailänder V; Helm M; Barz M; Butt HJ; Koynov K
    Nat Commun; 2018 Dec; 9(1):5306. PubMed ID: 30546066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A New Methodology to Create Polymeric Nanocarriers Containing Hydrophilic Low Molecular-Weight Drugs: A Green Strategy Providing a Very High Drug Loading.
    Villamizar-Sarmiento MG; Molina-Soto EF; Guerrero J; Shibue T; Nishide H; Moreno-Villoslada I; Oyarzun-Ampuero FA
    Mol Pharm; 2019 Jul; 16(7):2892-2901. PubMed ID: 31181908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BODIPY-loaded polymer nanoparticles: chemical structure of cargo defines leakage from nanocarrier in living cells.
    Trofymchuk K; Valanciunaite J; Andreiuk B; Reisch A; Collot M; Klymchenko AS
    J Mater Chem B; 2019 Aug; 7(34):5199-5210. PubMed ID: 31364614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Encapsulation and Controlled Release of a Camptothecin Prodrug from Nanocarriers and Microgels: Tuning Release Rate with Nanocarrier Excipient Composition.
    Wilson BK; Sinko PJ; Prud'homme RK
    Mol Pharm; 2021 Mar; 18(3):1093-1101. PubMed ID: 33440941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Developments in the Application of Polymeric Nanoparticles as Drug Carriers.
    Moritz M; Geszke-Moritz M
    Adv Clin Exp Med; 2015; 24(5):749-58. PubMed ID: 26768624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymeric core-shell assemblies mediated by host-guest interactions: versatile nanocarriers for drug delivery.
    Zhang J; Ma PX
    Angew Chem Int Ed Engl; 2009; 48(5):964-8. PubMed ID: 19101966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence correlation spectroscopy for the characterisation of drug delivery systems.
    Delie F; Gurny R; Zimmer A
    Biol Chem; 2001 Mar; 382(3):487-90. PubMed ID: 11347898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug Delivery Systems Based on Polymeric Micelles and Ultrasound: A Review.
    Tanbour R; Martins AM; Pitt WG; Husseini GA
    Curr Pharm Des; 2016; 22(19):2796-807. PubMed ID: 26898742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructured lipid carriers, solid lipid nanoparticles, and polymeric nanoparticles: which kind of drug delivery system is better for glioblastoma chemotherapy?
    Qu J; Zhang L; Chen Z; Mao G; Gao Z; Lai X; Zhu X; Zhu J
    Drug Deliv; 2016 Nov; 23(9):3408-3416. PubMed ID: 27181462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications.
    Fleige E; Quadir MA; Haag R
    Adv Drug Deliv Rev; 2012 Jun; 64(9):866-84. PubMed ID: 22349241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanocarriers for the treatment of glioblastoma multiforme: Current state-of-the-art.
    Karim R; Palazzo C; Evrard B; Piel G
    J Control Release; 2016 Apr; 227():23-37. PubMed ID: 26892752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The key role of the drug self-aggregation ability to obtain optimal nanocarriers based on aromatic-aromatic drug-polymer interactions.
    Villamizar-Sarmiento MG; Guerrero J; Moreno-Villoslada I; Oyarzun-Ampuero FA
    Eur J Pharm Biopharm; 2021 Sep; 166():19-29. PubMed ID: 34052430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymeric nanocarriers for controlled and enhanced delivery of therapeutic agents to the CNS.
    Gagliardi M; Bardi G; Bifone A
    Ther Deliv; 2012 Jul; 3(7):875-87. PubMed ID: 22900468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The immune-stealth polymeric coating on drug delivery nanocarriers: In vitro engineering and in vivo fate.
    Shafaei N; Khorshidi S; Karkhaneh A
    J Biomater Appl; 2023 Aug; 38(2):159-178. PubMed ID: 37480331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility.
    Tarn D; Ashley CE; Xue M; Carnes EC; Zink JI; Brinker CJ
    Acc Chem Res; 2013 Mar; 46(3):792-801. PubMed ID: 23387478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging antitumor applications of extracellularly reengineered polymeric nanocarriers.
    Chen J; Ding J; Xiao C; Zhuang X; Chen X
    Biomater Sci; 2015 Jul; 3(7):988-1001. PubMed ID: 26221934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of time-resolved fluorescence for direct and continuous probing of release from polymeric delivery vehicles.
    Viger ML; Sheng W; McFearin CL; Berezin MY; Almutairi A
    J Control Release; 2013 Nov; 171(3):308-14. PubMed ID: 23792808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics.
    Gu L; Faig A; Abdelhamid D; Uhrich K
    Acc Chem Res; 2014 Oct; 47(10):2867-77. PubMed ID: 25141069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.