These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35174847)

  • 1. Effects of vacancy defects on the interfacial thermal resistance of partially overlapped bilayer graphene.
    Wang BC; Cao Q; Shao W; Cui Z
    Phys Chem Chem Phys; 2022 Mar; 24(9):5546-5554. PubMed ID: 35174847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoresonator vibrational behaviour analysis of single- and double-layer graphene with atomic vacancy and pinhole defects.
    Makwana M; Patel AM
    J Mol Model; 2023 Apr; 29(5):149. PubMed ID: 37074494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robustly Engineering Thermal Conductivity of Bilayer Graphene by Interlayer Bonding.
    Zhang X; Gao Y; Chen Y; Hu M
    Sci Rep; 2016 Feb; 6():22011. PubMed ID: 26911859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects.
    Liu Y; Hu C; Huang J; Sumpter BG; Qiao R
    J Chem Phys; 2015 Jun; 142(24):244703. PubMed ID: 26133445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interlayer vacancy defects in AA-stacked bilayer graphene: density functional theory predictions.
    Vuong A; Trevethan T; Latham CD; Ewels CP; Erbahar D; Briddon PR; Rayson MJ; Heggie MI
    J Phys Condens Matter; 2017 Apr; 29(15):155304. PubMed ID: 28181915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of the thermal conductivity, interlayer thermal resistance, and interfacial thermal conductance of C
    Song J; Xu Z; He X; Liang X
    Phys Chem Chem Phys; 2022 Apr; 24(16):9648-9658. PubMed ID: 35411355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-Interface Defects in Graphene/H-BN In-Plane Heterostructures: Insights into the Interfacial Thermal Transport.
    Zhang N; Zhou B; Li D; Qi D; Wu Y; Zheng H; Yang B
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced Thermal Transport in the Graphene/MoS
    Srinivasan S; Balasubramanian G
    Langmuir; 2018 Mar; 34(10):3326-3335. PubMed ID: 29429341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of doped nitrogen and vacancy defects on the thermal conductivity of graphene nanoribbons.
    Yang H; Tang Y; Gong J; Liu Y; Wang X; Zhao Y; Yang P; Wang S
    J Mol Model; 2013 Nov; 19(11):4781-8. PubMed ID: 24013440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phonon Thermal Transport in Silicene/Graphene Heterobilayer Nanostructures: Effect of Interlayer Interactions.
    Zhou J; Li H; Tang HK; Shao L; Han K; Shen X
    ACS Omega; 2022 Feb; 7(7):5844-5852. PubMed ID: 35224345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal Conductivity of the Graphene/Polydimethylsiloxane Composite by Manipulating the Network Structure.
    Gao Y; Hu Z; Zhang W; Lu Y; Li J; Liu L; Liu X; Zhao X; Zhang L
    Langmuir; 2024 Aug; 40(32):17141-17150. PubMed ID: 39096500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal transport of graphene-C
    Zhang G; Dong S; Wang X; Xin G
    Nanotechnology; 2023 Nov; 35(5):. PubMed ID: 37879323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interlayer thermal conductance within a phosphorene and graphene bilayer.
    Hong Y; Zhang J; Zeng XC
    Nanoscale; 2016 Nov; 8(46):19211-19218. PubMed ID: 27841424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Molecular Dynamics-Based Approach to Study the Effect of Covalently Bonded Modified Graphene on the Heat Transport Properties of Graphene/Natural Rubber Composite Material Interfaces.
    Yan Y; Tao Y; Liang C; Liu Z; Li T; An G
    Langmuir; 2024 Oct; 40(42):22037-22048. PubMed ID: 39390374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal Transport in Graphene Oxide Films: Theoretical Analysis and Molecular Dynamics Simulation.
    Yang Y; Zhong D; Liu Y; Meng D; Wang L; Wei N; Ren G; Yan R; Kang Y
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32046079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Molecular Dynamics Simulation Study of In- and Cross-Plane Thermal Conductivity of Bilayer Graphene.
    Mohammadi R; Ghaderi MR; Hajian E
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial Modulation of Graphene by Polythiophene with Controlled Molecular Weight to Enhance Thermal Conductivity.
    Li Y; Wang Y; Chen P; Xia R; Wu B; Qian J
    Membranes (Basel); 2021 Nov; 11(11):. PubMed ID: 34832125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced in-plane thermal conductivity of polyimide-based composites
    Lan H; Wu B; Yan Y; Xia R; Qian J
    Nanoscale; 2023 Feb; 15(8):4114-4122. PubMed ID: 36744939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial thermal transport between graphene and diamane.
    Hong Y; Kretchmer JS
    J Chem Phys; 2022 Apr; 156(16):164703. PubMed ID: 35489998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial Strengthening of Graphene/Aluminum Composites through Point Defects: A First-Principles Study.
    Zhang X; Wang S
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33804166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.