These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 35174913)

  • 1. Phase-Change-Enabled, Rapid, High-Resolution Direct Ink Writing of Soft Silicone.
    Wang Y; Willenbacher N
    Adv Mater; 2022 Apr; 34(15):e2109240. PubMed ID: 35174913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multimaterial 3D Printing of Highly Stretchable Silicone Elastomers.
    Zhou LY; Gao Q; Fu JZ; Chen QY; Zhu JP; Sun Y; He Y
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23573-23583. PubMed ID: 31184459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New 3D Printing Strategy by Harnessing Deformation, Instability, and Fracture of Viscoelastic Inks.
    Yuk H; Zhao X
    Adv Mater; 2018 Feb; 30(6):. PubMed ID: 29239049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Ink Writing: A 3D Printing Technology for Diverse Materials.
    Saadi MASR; Maguire A; Pottackal NT; Thakur MSH; Ikram MM; Hart AJ; Ajayan PM; Rahman MM
    Adv Mater; 2022 Jul; 34(28):e2108855. PubMed ID: 35246886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D printing of thermosets with diverse rheological and functional applicabilities.
    Sun Y; Wang L; Ni Y; Zhang H; Cui X; Li J; Zhu Y; Liu J; Zhang S; Chen Y; Li M
    Nat Commun; 2023 Jan; 14(1):245. PubMed ID: 36646723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Printing of High Viscosity Reinforced Silicone Elastomers.
    Rodriguez N; Ruelas S; Forien JB; Dudukovic N; DeOtte J; Rodriguez J; Moran B; Lewicki JP; Duoss EB; Oakdale JS
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34300996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Embedded Core-Shell 3D Printing (eCS3DP) with Low-Viscosity Polysiloxanes.
    Karyappa R; Goh WH; Hashimoto M
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):41520-41530. PubMed ID: 36048005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Innovations in hydrogel-based manufacturing: A comprehensive review of direct ink writing technique for biomedical applications.
    Baniasadi H; Abidnejad R; Fazeli M; Lipponen J; Niskanen J; Kontturi E; Seppälä J; Rojas OJ
    Adv Colloid Interface Sci; 2024 Feb; 324():103095. PubMed ID: 38301316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printing Soft Matters and Applications: A Review.
    Zhan S; Guo AXY; Cao SC; Liu N
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Printability of Poly(lactic acid) Ink by Embedded 3D Printing
    Karyappa R; Liu H; Zhu Q; Hashimoto M
    ACS Appl Mater Interfaces; 2023 May; 15(17):21575-21584. PubMed ID: 37078653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 4D Printing of Glass Fiber-Regulated Shape Shifting Structures with High Stiffness.
    Weng S; Kuang X; Zhang Q; Hamel CM; Roach DJ; Hu N; Jerry Qi H
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12797-12804. PubMed ID: 33355461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct-Ink-Writing 3D-Printed Bioelectronics.
    Tay RY; Song Y; Yao DR; Gao W
    Mater Today (Kidlington); 2023 Dec; 71():135-151. PubMed ID: 38222250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct ink writing of aloe vera/cellulose nanofibrils bio-hydrogels.
    Baniasadi H; Ajdary R; Trifol J; Rojas OJ; Seppälä J
    Carbohydr Polym; 2021 Aug; 266():118114. PubMed ID: 34044931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructures, Mechanical Properties and Electromagnetic Wave Absorption Performance of Porous SiC Ceramics by Direct Foaming Combined with Direct-Ink-Writing-Based 3D Printing.
    Wu J; Zhang L; Wang W; Su R; Gao X; Li S; Wang G; He R
    Materials (Basel); 2023 Apr; 16(7):. PubMed ID: 37049155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-Operando Study of Shape Retention and Microstructure Development in a Hydrolyzing Sol-Gel Ink during 3D-Printing.
    Torres Arango MA; Zhang Y; Li R; Doerk G; Fluerasu A; Wiegart L
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):51044-51056. PubMed ID: 33138355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chitosan-based electroconductive inks without chemical reaction for cost-effective and versatile 3D printing for electromagnetic interference (EMI) shielding and strain-sensing applications.
    Sanandiya ND; Pai AR; Seyedin S; Tang F; Thomas S; Xie F
    Carbohydr Polym; 2024 Aug; 337():122161. PubMed ID: 38710576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Ink Writing 3D Printing Elastomeric Polyurethane Aided by Cellulose Nanofibrils.
    Yu Z; Sun X; Zhu Y; Zhou E; Cheng C; Zhu J; Yang P; Zheng D; Zhang Y; Panahi-Sarmad M; Jiang F
    ACS Nano; 2024 Oct; 18(41):28142-28153. PubMed ID: 39353083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 4D Printing of a Liquid Crystal Elastomer with a Controllable Orientation Gradient.
    Zhang C; Lu X; Fei G; Wang Z; Xia H; Zhao Y
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44774-44782. PubMed ID: 31692319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheology and Printability of a Porcelain Clay Paste for DIW 3D Printing of Ceramics with Complex Geometric Structures.
    Wu Y; Lan J; Wu M; Zhou W; Zhou S; Yang H; Zhang M; Li Y
    ACS Omega; 2024 Jun; 9(24):26450-26457. PubMed ID: 38911716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Printed Highly Porous and Flexible Conductive Polymer Nanocomposites with Dual-Scale Porosity and Piezoresistive Sensing Functions.
    Abshirini M; Marashizadeh P; Saha MC; Altan MC; Liu Y
    ACS Appl Mater Interfaces; 2023 Mar; ():. PubMed ID: 36912907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.