These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35174946)

  • 1. Critical thermal limits in ants and their implications under climate change.
    Nascimento G; Câmara T; Arnan X
    Biol Rev Camb Philos Soc; 2022 Aug; 97(4):1287-1305. PubMed ID: 35174946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae).
    Baudier KM; Mudd AE; Erickson SC; O'Donnell S
    J Anim Ecol; 2015 Sep; 84(5):1322-30. PubMed ID: 26072696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change.
    Andrew NR; Hart RA; Jung MP; Hemmings Z; Terblanche JS
    J Insect Physiol; 2013 Sep; 59(9):870-80. PubMed ID: 23806604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Thermal Breadth of Nylanderia fulva (Hymenoptera: Formicidae) Is Narrower Than That of Solenopsis invicta at Three Thermal Ramping Rates: 1.0, 0.12, and 0.06°C min-1.
    Bentley MT; Hahn DA; Oi FM
    Environ Entomol; 2016 Aug; 45(4):1058-62. PubMed ID: 27252409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal adaptation generates a diversity of thermal limits in a rainforest ant community.
    Kaspari M; Clay NA; Lucas J; Yanoviak SP; Kay A
    Glob Chang Biol; 2015 Mar; 21(3):1092-102. PubMed ID: 25242246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotic and abiotic controls of Argentine ant invasion success at local and landscape scales.
    Menke SB; Fisher RN; Jetz W; Holway DA
    Ecology; 2007 Dec; 88(12):3164-73. PubMed ID: 18229850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The response of ants to climate change.
    Parr CL; Bishop TR
    Glob Chang Biol; 2022 May; 28(10):3188-3205. PubMed ID: 35274797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Invasive ant establishment, spread, and management with changing climate.
    Lach L
    Curr Opin Insect Sci; 2021 Oct; 47():119-124. PubMed ID: 34252591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aridity and land use negatively influence a dominant species' upper critical thermal limits.
    Andrew NR; Miller C; Hall G; Hemmings Z; Oliver I
    PeerJ; 2019; 6():e6252. PubMed ID: 30656070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ant functional responses along environmental gradients.
    Arnan X; Cerdá X; Retana J
    J Anim Ecol; 2014 Nov; 83(6):1398-408. PubMed ID: 24720700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is thermal limitation the primary driver of elevational distributions? Not for montane rainforest ants in the Australian Wet Tropics.
    Nowrouzi S; Andersen AN; Bishop TR; Robson SKA
    Oecologia; 2018 Oct; 188(2):333-342. PubMed ID: 29736865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Food resource exploitation and functional resilience in ant communities found in common Mediterranean habitats.
    Arnan X; Molowny-Horas R; Blüthgen N
    Sci Total Environ; 2019 Sep; 684():126-135. PubMed ID: 31153062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of urban development on ant communities: implications for ecosystem services and management.
    Sanford MP; Manley PN; Murphy DD
    Conserv Biol; 2009 Feb; 23(1):131-41. PubMed ID: 18778268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arboreality drives heat tolerance while elevation drives cold tolerance in tropical rainforest ants.
    Leahy L; Scheffers BR; Williams SE; Andersen AN
    Ecology; 2022 Jan; 103(1):e03549. PubMed ID: 34618920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of nest surface temperatures and the brain in influencing ant metabolic rates.
    Andrew NR; Ghaedi B; Groenewald B
    J Therm Biol; 2016 Aug; 60():132-9. PubMed ID: 27503725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of increasing aridity and chronic anthropogenic disturbance on seed dispersal by ants in Brazilian Caatinga.
    Oliveira FMP; Andersen AN; Arnan X; Ribeiro-Neto JD; Arcoverde GB; Leal IR
    J Anim Ecol; 2019 Jun; 88(6):870-880. PubMed ID: 30883729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-driven homogenization of an ant community over 60 years in a montane ecosystem.
    Paraskevopoulos AW; Sanders NJ; Resasco J
    Ecology; 2024 May; 105(5):e4302. PubMed ID: 38594213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Daily Dynamics of an Ant Community in a Mountaintop Ecosystem.
    Calazans EG; Costa FVD; Cristiano MP; Cardoso DC
    Environ Entomol; 2020 Apr; 49(2):383-390. PubMed ID: 32078670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ant-termite interactions: an important but under-explored ecological linkage.
    Tuma J; Eggleton P; Fayle TM
    Biol Rev Camb Philos Soc; 2020 Jun; 95(3):555-572. PubMed ID: 31876057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of forest seral stage on use of ant communities for rapid assessment of terrestrial ecosystem health.
    Wike LD; Martin FD; Paller MH; Nelson EA
    J Insect Sci; 2010; 10():77. PubMed ID: 20673195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.