BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35175232)

  • 1. The High-cycle Fatigue Life of Cortical Bone Allografts Is Radiation Sterilization Dose-dependent: An In Vitro Study.
    Ina J; Vakharia A; Akkus O; Rimnac CM
    Clin Orthop Relat Res; 2022 Jun; 480(6):1208-1219. PubMed ID: 35175232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep-Freezing Temperatures During Irradiation Preserves the Compressive Strength of Human Cortical Bone Allografts: A Cadaver Study.
    Yang Harmony TC; Yusof N; Ramalingam S; Baharin R; Syahrom A; Mansor A
    Clin Orthop Relat Res; 2022 Feb; 480(2):407-418. PubMed ID: 34491235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gamma Radiation Sterilization Reduces the High-cycle Fatigue Life of Allograft Bone.
    Islam A; Chapin K; Moore E; Ford J; Rimnac C; Akkus O
    Clin Orthop Relat Res; 2016 Mar; 474(3):827-35. PubMed ID: 26463571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of gamma radiation sterilization on the fatigue crack propagation resistance of human cortical bone.
    Mitchell EJ; Stawarz AM; Kayacan R; Rimnac CM
    J Bone Joint Surg Am; 2004 Dec; 86(12):2648-57. PubMed ID: 15590849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dose-dependent effects of gamma radiation sterilization on the collagen matrix of human cortical bone allograft and its influence on fatigue crack propagation resistance.
    Crocker DB; Hering TM; Akkus O; Oest ME; Rimnac CM
    Cell Tissue Bank; 2024 May; ():. PubMed ID: 38750214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman Biomarkers Are Associated with Cyclic Fatigue Life of Human Allograft Cortical Bone.
    Du JY; Flanagan CD; Bensusan JS; Knusel KD; Akkus O; Rimnac CM
    J Bone Joint Surg Am; 2019 Sep; 101(17):e85. PubMed ID: 31483404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman spectral markers of collagen denaturation and hydration in human cortical bone tissue are affected by radiation sterilization and high cycle fatigue damage.
    Flanagan CD; Unal M; Akkus O; Rimnac CM
    J Mech Behav Biomed Mater; 2017 Nov; 75():314-321. PubMed ID: 28772165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free radical scavenging alleviates the biomechanical impairment of gamma radiation sterilized bone tissue.
    Akkus O; Belaney RM; Das P
    J Orthop Res; 2005 Jul; 23(4):838-45. PubMed ID: 16022998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatigue crack propagation and fracture toughness of cortical bone are radiation dose-dependent.
    Crocker DB; Hoffman I; Carter JLW; Akkus O; Rimnac CM
    J Orthop Res; 2023 Apr; 41(4):823-833. PubMed ID: 35949192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone embrittlement and collagen modifications due to high-dose gamma-irradiation sterilization.
    Burton B; Gaspar A; Josey D; Tupy J; Grynpas MD; Willett TL
    Bone; 2014 Apr; 61():71-81. PubMed ID: 24440514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microdamage distribution in fatigue fractures of bone allografts following gamma-ray exposure.
    Presbítero G; Hernandez-Rodríguez MAL; Contreras-Hernandez GR; Vilchez JF; Susarrey O; Gutiérrez D
    Acta Bioeng Biomech; 2017; 19(4):42-53. PubMed ID: 29507436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sterilization by gamma radiation impairs the tensile fatigue life of cortical bone by two orders of magnitude.
    Akkus O; Belaney RM
    J Orthop Res; 2005 Sep; 23(5):1054-8. PubMed ID: 16140190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fracture resistance of gamma radiation sterilized cortical bone allografts.
    Akkus O; Rimnac CM
    J Orthop Res; 2001 Sep; 19(5):927-34. PubMed ID: 11562143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of ribose pre-treatment of cortical bone on γ-irradiation sterilization effectiveness.
    Attia T; Tupy J; Asker D; Hatton B; Grynpas M; Willett T
    Cell Tissue Bank; 2017 Dec; 18(4):555-560. PubMed ID: 29032461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sterilization of bone allografts by microwave and gamma radiation.
    Singh R; Singh D
    Int J Radiat Biol; 2012 Sep; 88(9):661-6. PubMed ID: 22671282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soft-tissue allografts terminally sterilized with an electron beam are biomechanically equivalent to aseptic, nonsterilized tendons.
    Elenes EY; Hunter SA
    J Bone Joint Surg Am; 2014 Aug; 96(16):1321-6. PubMed ID: 25143491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-dose electron beam sterilization of soft-tissue grafts maintains significantly improved biomechanical properties compared to standard gamma treatment.
    Hoburg A; Keshlaf S; Schmidt T; Smith M; Gohs U; Perka C; Pruss A; Scheffler S
    Cell Tissue Bank; 2015 Jun; 16(2):219-26. PubMed ID: 25037592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CORR Insights®: The High-cycle Fatigue Life of Cortical Bone Allografts Is Radiation Sterilization Dose-dependent: An In Vitro Study.
    Walsh WR
    Clin Orthop Relat Res; 2022 Jun; 480(6):1220-1221. PubMed ID: 35302541
    [No Abstract]   [Full Text] [Related]  

  • 19. Reducing the radiation sterilization dose improves mechanical and biological quality while retaining sterility assurance levels of bone allografts.
    Nguyen H; Cassady AI; Bennett MB; Gineyts E; Wu A; Morgan DA; Forwood MR
    Bone; 2013 Nov; 57(1):194-200. PubMed ID: 23912050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sterilization of allograft bone: effects of gamma irradiation on allograft biology and biomechanics.
    Nguyen H; Morgan DA; Forwood MR
    Cell Tissue Bank; 2007; 8(2):93-105. PubMed ID: 17063262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.