These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35175271)

  • 1. Tough and self-healing hydrogels based on transient crosslinking by nanoparticles.
    Hong L; Liu L; Zhang Z; Song J; Li S; Chen K; Gao G; Wang Y
    Soft Matter; 2022 Mar; 18(9):1885-1895. PubMed ID: 35175271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tough hydrophobic association hydrogels with self-healing and reforming capabilities achieved by polymeric core-shell nanoparticles.
    Chen J; An R; Han L; Wang X; Zhang Y; Shi L; Ran R
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():460-467. PubMed ID: 30889720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust, tough and anti-fatigue cationic latex composite hydrogels based on dual physically cross-linked networks.
    Gu S; Duan L; Ren X; Gao GH
    J Colloid Interface Sci; 2017 Apr; 492():119-126. PubMed ID: 28081456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Super-tough, ultra-stretchable and strongly compressive hydrogels with core-shell latex particles inducing efficient aggregation of hydrophobic chains.
    Ren X; Huang C; Duan L; Liu B; Bu L; Guan S; Hou J; Zhang H; Gao G
    Soft Matter; 2017 May; 13(18):3352-3358. PubMed ID: 28422241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly tough, anti-fatigue and rapidly self-recoverable hydrogels reinforced with core-shell inorganic-organic hybrid latex particles.
    Xia S; Song S; Ren X; Gao G
    Soft Matter; 2017 Sep; 13(36):6059-6067. PubMed ID: 28776059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topological cyclodextrin nanoparticles as crosslinkers for self-healing tough hydrogels as strain sensors.
    Chen J; Xu X; Liu M; Li Y; Yu D; Lu Y; Xiong M; Wyman I; Xu X; Wu X
    Carbohydr Polym; 2021 Jul; 264():117978. PubMed ID: 33910754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polydopamine/polystyrene nanocomposite double-layer strain sensor hydrogel with mechanical, self-healing, adhesive and conductive properties.
    Han L; Liu M; Yan B; Li Y; Lan J; Shi L; Ran R
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110567. PubMed ID: 32229002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tough, Stretchable, Compressive Novel Polymer/Graphene Oxide Nanocomposite Hydrogels with Excellent Self-Healing Performance.
    Pan C; Liu L; Chen Q; Zhang Q; Guo G
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):38052-38061. PubMed ID: 29019393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-healing in tough graphene oxide composite hydrogels.
    Liu J; Song G; He C; Wang H
    Macromol Rapid Commun; 2013 Jun; 34(12):1002-7. PubMed ID: 23653331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Super flexible, fatigue resistant, self-healing PVA/xylan/borax hydrogel with dual-crosslinked network.
    Ai J; Li K; Li J; Yu F; Ma J
    Int J Biol Macromol; 2021 Mar; 172():66-73. PubMed ID: 33434549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultratough, Self-Healing, and Tissue-Adhesive Hydrogel for Wound Dressing.
    Chen T; Chen Y; Rehman HU; Chen Z; Yang Z; Wang M; Li H; Liu H
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33523-33531. PubMed ID: 30204399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stretchable, tough, self-recoverable, and cytocompatible chitosan/cellulose nanocrystals/polyacrylamide hybrid hydrogels.
    Huang W; Wang Y; McMullen LM; McDermott MT; Deng H; Du Y; Chen L; Zhang L
    Carbohydr Polym; 2019 Oct; 222():114977. PubMed ID: 31320104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully physically crosslinked pectin-based hydrogel with high stretchability and toughness for biomedical application.
    Wu X; Sun H; Qin Z; Che P; Yi X; Yu Q; Zhang H; Sun X; Yao F; Li J
    Int J Biol Macromol; 2020 Apr; 149():707-716. PubMed ID: 32014477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Healable and Super-Tough Double-Network Hydrogel Fibers from Dynamic Acylhydrazone Bonding and Supramolecular Interactions.
    Hua J; Liu C; Fei B; Liu Z
    Gels; 2022 Feb; 8(2):. PubMed ID: 35200482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired Hydrogel-Polymer Hybrids with a Tough and Antifatigue Interface via One-Step Polymerization.
    Li XC; Hao DZ; Hao WJ; Guo XL; Jiang L
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):51036-51043. PubMed ID: 33112597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High strength pure chitosan hydrogels via double crosslinking strategy.
    Huang L; Chu Y; Zhang L; Liu X; Hao W; Chen Y; Dai J
    Biomed Mater; 2021 Jun; 16(4):. PubMed ID: 34038891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Tough Hydrogels with the Body Temperature-Responsive Shape Memory Effect.
    Liang R; Yu H; Wang L; Lin L; Wang N; Naveed KU
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43563-43572. PubMed ID: 31656069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual physically crosslinked hydrogels based on the synergistic effects of electrostatic and dipole-dipole interactions.
    Cao J; Cai Y; Yu L; Zhou J
    J Mater Chem B; 2019 Jan; 7(4):676-683. PubMed ID: 32254800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adhesive and tough hydrogels promoted by quaternary chitosan for strain sensor.
    Wang T; Ren X; Bai Y; Liu L; Wu G
    Carbohydr Polym; 2021 Feb; 254():117298. PubMed ID: 33357866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Injectable, Self-Healing, and Multi-Responsive Hydrogels via Dynamic Covalent Bond Formation between Benzoxaborole and Hydroxyl Groups.
    Chen Y; Tan Z; Wang W; Peng YY; Narain R
    Biomacromolecules; 2019 Feb; 20(2):1028-1035. PubMed ID: 30596492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.