BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 35175277)

  • 1. A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways.
    Eising S; Esch B; Wälte M; Vargas Duarte P; Walter S; Ungermann C; Bohnert M; Fröhlich F
    J Cell Biol; 2022 Apr; 221(4):. PubMed ID: 35175277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The AP-3 adaptor complex mediates sorting of yeast and mammalian PQ-loop-family basic amino acid transporters to the vacuolar/lysosomal membrane.
    Llinares E; Barry AO; André B
    Sci Rep; 2015 Nov; 5():16665. PubMed ID: 26577948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane protein recycling from the vacuole/lysosome membrane.
    Suzuki SW; Emr SD
    J Cell Biol; 2018 May; 217(5):1623-1632. PubMed ID: 29511122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide analysis of AP-3-dependent protein transport in yeast.
    Anand VC; Daboussi L; Lorenz TC; Payne GS
    Mol Biol Cell; 2009 Mar; 20(5):1592-604. PubMed ID: 19116312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome.
    Baba M; Osumi M; Scott SV; Klionsky DJ; Ohsumi Y
    J Cell Biol; 1997 Dec; 139(7):1687-95. PubMed ID: 9412464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lysosomal and vacuolar sorting: not so different after all!
    de Marcos Lousa C; Denecke J
    Biochem Soc Trans; 2016 Jun; 44(3):891-7. PubMed ID: 27284057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway.
    Shintani T; Klionsky DJ
    J Biol Chem; 2004 Jul; 279(29):29889-94. PubMed ID: 15138258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae.
    Bowers K; Stevens TH
    Biochim Biophys Acta; 2005 Jul; 1744(3):438-54. PubMed ID: 15913810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vacuole biogenesis in Saccharomyces cerevisiae: protein transport pathways to the yeast vacuole.
    Bryant NJ; Stevens TH
    Microbiol Mol Biol Rev; 1998 Mar; 62(1):230-47. PubMed ID: 9529893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of Amino Acids across the Vacuolar Membrane of Yeast: Its Mechanism and Physiological Role.
    Kawano-Kawada M; Kakinuma Y; Sekito T
    Biol Pharm Bull; 2018; 41(10):1496-1501. PubMed ID: 30270317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A newly characterized vacuolar serine carboxypeptidase, Atg42/Ybr139w, is required for normal vacuole function and the terminal steps of autophagy in the yeast Saccharomyces cerevisiae.
    Parzych KR; Ariosa A; Mari M; Klionsky DJ
    Mol Biol Cell; 2018 May; 29(9):1089-1099. PubMed ID: 29514932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal dynamics of membrane remodeling and fusion proteins during endocytic transport.
    Arlt H; Auffarth K; Kurre R; Lisse D; Piehler J; Ungermann C
    Mol Biol Cell; 2015 Apr; 26(7):1357-70. PubMed ID: 25657322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Fab1/PIKfyve phosphoinositide phosphate kinase is not necessary to maintain the pH of lysosomes and of the yeast vacuole.
    Ho CY; Choy CH; Wattson CA; Johnson DE; Botelho RJ
    J Biol Chem; 2015 Apr; 290(15):9919-28. PubMed ID: 25713145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dileucine-like sorting signal directs transport into an AP-3-dependent, clathrin-independent pathway to the yeast vacuole.
    Vowels JJ; Payne GS
    EMBO J; 1998 May; 17(9):2482-93. PubMed ID: 9564031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aspartyl aminopeptidase is imported from the cytoplasm to the vacuole by selective autophagy in Saccharomyces cerevisiae.
    Yuga M; Gomi K; Klionsky DJ; Shintani T
    J Biol Chem; 2011 Apr; 286(15):13704-13. PubMed ID: 21343297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The G1 cyclin Cln3p controls vacuolar biogenesis in Saccharomyces cerevisiae.
    Han BK; Aramayo R; Polymenis M
    Genetics; 2003 Oct; 165(2):467-76. PubMed ID: 14573462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Traffic into the prevacuolar/endosomal compartment of Saccharomyces cerevisiae: a VPS45-dependent intracellular route and a VPS45-independent, endocytic route.
    Bryant NJ; Piper RC; Gerrard SR; Stevens TH
    Eur J Cell Biol; 1998 May; 76(1):43-52. PubMed ID: 9650782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ESCRT machinery plays a role in microautophagy in yeast.
    Morshed S; Tasnin MN; Ushimaru T
    BMC Mol Cell Biol; 2020 Oct; 21(1):70. PubMed ID: 33028189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular machinery required for autophagy and the cytoplasm to vacuole targeting (Cvt) pathway in S. cerevisiae.
    Khalfan WA; Klionsky DJ
    Curr Opin Cell Biol; 2002 Aug; 14(4):468-75. PubMed ID: 12383798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The yeast lysosome-like vacuole: endpoint and crossroads.
    Li SC; Kane PM
    Biochim Biophys Acta; 2009 Apr; 1793(4):650-63. PubMed ID: 18786576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.