These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 35175277)
1. A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways. Eising S; Esch B; Wälte M; Vargas Duarte P; Walter S; Ungermann C; Bohnert M; Fröhlich F J Cell Biol; 2022 Apr; 221(4):. PubMed ID: 35175277 [TBL] [Abstract][Full Text] [Related]
2. The AP-3 adaptor complex mediates sorting of yeast and mammalian PQ-loop-family basic amino acid transporters to the vacuolar/lysosomal membrane. Llinares E; Barry AO; André B Sci Rep; 2015 Nov; 5():16665. PubMed ID: 26577948 [TBL] [Abstract][Full Text] [Related]
3. Membrane protein recycling from the vacuole/lysosome membrane. Suzuki SW; Emr SD J Cell Biol; 2018 May; 217(5):1623-1632. PubMed ID: 29511122 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide analysis of AP-3-dependent protein transport in yeast. Anand VC; Daboussi L; Lorenz TC; Payne GS Mol Biol Cell; 2009 Mar; 20(5):1592-604. PubMed ID: 19116312 [TBL] [Abstract][Full Text] [Related]
5. Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome. Baba M; Osumi M; Scott SV; Klionsky DJ; Ohsumi Y J Cell Biol; 1997 Dec; 139(7):1687-95. PubMed ID: 9412464 [TBL] [Abstract][Full Text] [Related]
6. Lysosomal and vacuolar sorting: not so different after all! de Marcos Lousa C; Denecke J Biochem Soc Trans; 2016 Jun; 44(3):891-7. PubMed ID: 27284057 [TBL] [Abstract][Full Text] [Related]
7. Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway. Shintani T; Klionsky DJ J Biol Chem; 2004 Jul; 279(29):29889-94. PubMed ID: 15138258 [TBL] [Abstract][Full Text] [Related]
8. Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae. Bowers K; Stevens TH Biochim Biophys Acta; 2005 Jul; 1744(3):438-54. PubMed ID: 15913810 [TBL] [Abstract][Full Text] [Related]
9. Vacuole biogenesis in Saccharomyces cerevisiae: protein transport pathways to the yeast vacuole. Bryant NJ; Stevens TH Microbiol Mol Biol Rev; 1998 Mar; 62(1):230-47. PubMed ID: 9529893 [TBL] [Abstract][Full Text] [Related]
10. Transport of Amino Acids across the Vacuolar Membrane of Yeast: Its Mechanism and Physiological Role. Kawano-Kawada M; Kakinuma Y; Sekito T Biol Pharm Bull; 2018; 41(10):1496-1501. PubMed ID: 30270317 [TBL] [Abstract][Full Text] [Related]
11. A newly characterized vacuolar serine carboxypeptidase, Atg42/Ybr139w, is required for normal vacuole function and the terminal steps of autophagy in the yeast Saccharomyces cerevisiae. Parzych KR; Ariosa A; Mari M; Klionsky DJ Mol Biol Cell; 2018 May; 29(9):1089-1099. PubMed ID: 29514932 [TBL] [Abstract][Full Text] [Related]
12. Spatiotemporal dynamics of membrane remodeling and fusion proteins during endocytic transport. Arlt H; Auffarth K; Kurre R; Lisse D; Piehler J; Ungermann C Mol Biol Cell; 2015 Apr; 26(7):1357-70. PubMed ID: 25657322 [TBL] [Abstract][Full Text] [Related]
13. The Fab1/PIKfyve phosphoinositide phosphate kinase is not necessary to maintain the pH of lysosomes and of the yeast vacuole. Ho CY; Choy CH; Wattson CA; Johnson DE; Botelho RJ J Biol Chem; 2015 Apr; 290(15):9919-28. PubMed ID: 25713145 [TBL] [Abstract][Full Text] [Related]
14. A dileucine-like sorting signal directs transport into an AP-3-dependent, clathrin-independent pathway to the yeast vacuole. Vowels JJ; Payne GS EMBO J; 1998 May; 17(9):2482-93. PubMed ID: 9564031 [TBL] [Abstract][Full Text] [Related]
15. Aspartyl aminopeptidase is imported from the cytoplasm to the vacuole by selective autophagy in Saccharomyces cerevisiae. Yuga M; Gomi K; Klionsky DJ; Shintani T J Biol Chem; 2011 Apr; 286(15):13704-13. PubMed ID: 21343297 [TBL] [Abstract][Full Text] [Related]
16. The G1 cyclin Cln3p controls vacuolar biogenesis in Saccharomyces cerevisiae. Han BK; Aramayo R; Polymenis M Genetics; 2003 Oct; 165(2):467-76. PubMed ID: 14573462 [TBL] [Abstract][Full Text] [Related]
17. Traffic into the prevacuolar/endosomal compartment of Saccharomyces cerevisiae: a VPS45-dependent intracellular route and a VPS45-independent, endocytic route. Bryant NJ; Piper RC; Gerrard SR; Stevens TH Eur J Cell Biol; 1998 May; 76(1):43-52. PubMed ID: 9650782 [TBL] [Abstract][Full Text] [Related]
18. ESCRT machinery plays a role in microautophagy in yeast. Morshed S; Tasnin MN; Ushimaru T BMC Mol Cell Biol; 2020 Oct; 21(1):70. PubMed ID: 33028189 [TBL] [Abstract][Full Text] [Related]
19. Molecular machinery required for autophagy and the cytoplasm to vacuole targeting (Cvt) pathway in S. cerevisiae. Khalfan WA; Klionsky DJ Curr Opin Cell Biol; 2002 Aug; 14(4):468-75. PubMed ID: 12383798 [TBL] [Abstract][Full Text] [Related]
20. The yeast lysosome-like vacuole: endpoint and crossroads. Li SC; Kane PM Biochim Biophys Acta; 2009 Apr; 1793(4):650-63. PubMed ID: 18786576 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]