These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35175424)

  • 1. Engineering precursor and co-factor supply to enhance D-pantothenic acid production in Bacillus megaterium.
    Tadi SRR; Nehru G; Allampalli SSP; Sivaprakasam S
    Bioprocess Biosyst Eng; 2022 May; 45(5):843-854. PubMed ID: 35175424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-level expression and optimization of pantoate-β-alanine ligase in
    Tadi SRR; Nehru G; Limaye AM; Sivaprakasam S
    J Food Sci Technol; 2022 Mar; 59(3):917-926. PubMed ID: 35153321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathway construction and metabolic engineering for fermentative production of β-alanine in Escherichia coli.
    Zou X; Guo L; Huang L; Li M; Zhang S; Yang A; Zhang Y; Zhu L; Zhang H; Zhang J; Feng Z
    Appl Microbiol Biotechnol; 2020 Mar; 104(6):2545-2559. PubMed ID: 31989219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production and characterization of low molecular weight heparosan in Bacillus megaterium using Escherichia coli K5 glycosyltransferases.
    Nehru G; Tadi SRR; Limaye AM; Sivaprakasam S
    Int J Biol Macromol; 2020 Oct; 160():69-76. PubMed ID: 32445821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-Pot Biosynthesis of 3-Aminopropionic Acid from Fumaric Acid Using Recombinant Bacillus megaterium Containing a Linear Dual-Enzyme Cascade.
    Tadi SRR; Nehru G; Sivaprakasam S
    Appl Biochem Biotechnol; 2022 Apr; 194(4):1740-1754. PubMed ID: 34997447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Bacillus megaterium for heparosan biosynthesis using Pasteurella multocida heparosan synthase, PmHS2.
    Williams A; Gedeon KS; Vaidyanathan D; Yu Y; Collins CH; Dordick JS; Linhardt RJ; Koffas MAG
    Microb Cell Fact; 2019 Aug; 18(1):132. PubMed ID: 31405374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rerouting Fluxes of the Central Carbon Metabolism and Relieving Mechanism-Based Inactivation of l-Aspartate-α-decarboxylase for Fermentative Production of β-Alanine in
    Li B; Zhang B; Wang P; Cai X; Chen YY; Yang YF; Liu ZQ; Zheng YG
    ACS Synth Biol; 2022 May; 11(5):1908-1918. PubMed ID: 35476404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing β-alanine production from glucose in genetically modified Corynebacterium glutamicum by metabolic pathway engineering.
    Wang JY; Rao ZM; Xu JZ; Zhang WG
    Appl Microbiol Biotechnol; 2021 Dec; 105(24):9153-9166. PubMed ID: 34837493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of rare codons and the functional coproduction of rate-limiting tRNAs on recombinant protein production in Bacillus megaterium.
    Finger C; Gamer M; Klunkelfuß S; Bunk B; Biedendieck R
    Appl Microbiol Biotechnol; 2015 Nov; 99(21):8999-9010. PubMed ID: 26138251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of Escherichia coli for production of L-aspartate and its derivative β-alanine with high stoichiometric yield.
    Piao X; Wang L; Lin B; Chen H; Liu W; Tao Y
    Metab Eng; 2019 Jul; 54():244-254. PubMed ID: 31063790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting metabolic driving and minimization of by-products synthesis for high-yield production of D-pantothenate in Escherichia coli.
    Li B; Zhang B; Wang P; Cai X; Tang YQ; Jin JY; Liang JX; Liu ZQ; Zheng YG
    Biotechnol J; 2022 Jan; 17(1):e2100431. PubMed ID: 34705325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Escherichia coli for d-pantothenic acid production.
    Zhang B; Zhang XM; Wang W; Liu ZQ; Zheng YG
    Food Chem; 2019 Oct; 294():267-275. PubMed ID: 31126462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of E. coli for β-alanine production using a multi-biosensor enabled approach.
    Yuan SF; Nair PH; Borbon D; Coleman SM; Fan PH; Lin WL; Alper HS
    Metab Eng; 2022 Nov; 74():24-35. PubMed ID: 36067877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Biosynthetic Pathway for the Production of Acrylic Acid through β-Alanine Route in
    Ko YS; Kim JW; Chae TU; Song CW; Lee SY
    ACS Synth Biol; 2020 May; 9(5):1150-1159. PubMed ID: 32243749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. D-mannitol production by resting state whole cell biotrans-formation of D-fructose by heterologous mannitol and formate dehydrogenase gene expression in Bacillus megaterium.
    Bäumchen C; Roth AH; Biedendieck R; Malten M; Follmann M; Sahm H; Bringer-Meyer S; Jahn D
    Biotechnol J; 2007 Nov; 2(11):1408-16. PubMed ID: 17619232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modular pathway engineering of key carbon-precursor supply-pathways for improved N-acetylneuraminic acid production in Bacillus subtilis.
    Zhang X; Liu Y; Liu L; Wang M; Li J; Du G; Chen J
    Biotechnol Bioeng; 2018 Sep; 115(9):2217-2231. PubMed ID: 29896807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of probiotic E. coli Nissle 1917 for β-alanine production by using protein and metabolic engineering.
    Hu S; Fei M; Fu B; Yu M; Yuan P; Tang B; Yang H; Sun D
    Appl Microbiol Biotechnol; 2023 Apr; 107(7-8):2277-2288. PubMed ID: 36929190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplex modification of Escherichia coli for enhanced β-alanine biosynthesis through metabolic engineering.
    Wang P; Zhou HY; Li B; Ding WQ; Liu ZQ; Zheng YG
    Bioresour Technol; 2021 Dec; 342():126050. PubMed ID: 34597803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved poly-γ-glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering.
    Feng J; Gu Y; Quan Y; Cao M; Gao W; Zhang W; Wang S; Yang C; Song C
    Metab Eng; 2015 Nov; 32():106-115. PubMed ID: 26410449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.