BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35175607)

  • 1. Measuring Mechanical Properties of Breast Cancer Cells with Atomic Force Microscopy.
    Zbiral B; Weber A; Toca-Herrera JL
    Methods Mol Biol; 2022; 2471():323-343. PubMed ID: 35175607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental extraction of Young's modulus of MCF-7 tissue using atomic force microscopy and the spherical contact models.
    Mirzaluo M; Fereiduni F; Taheri M; Modabberifar M
    Eur Biophys J; 2023 Feb; 52(1-2):81-90. PubMed ID: 36928920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resveratrol-Induced Temporal Variation in the Mechanical Properties of MCF-7 Breast Cancer Cells Investigated by Atomic Force Microscopy.
    Iturri J; Weber A; Moreno-Cencerrado A; Vivanco MD; Benítez R; Leporatti S; Toca-Herrera JL
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31277289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic force microscopy indentation and inverse analysis for non-linear viscoelastic identification of breast cancer cells.
    Nguyen N; Shao Y; Wineman A; Fu J; Waas A
    Math Biosci; 2016 Jul; 277():77-88. PubMed ID: 27107978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation.
    Coceano G; Yousafzai MS; Ma W; Ndoye F; Venturelli L; Hussain I; Bonin S; Niemela J; Scoles G; Cojoc D; Ferrari E
    Nanotechnology; 2016 Feb; 27(6):065102. PubMed ID: 26683826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic force microscopy studies on cellular elastic and viscoelastic properties.
    Li M; Liu L; Xi N; Wang Y
    Sci China Life Sci; 2018 Jan; 61(1):57-67. PubMed ID: 28667516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytomechanical and topological investigation of MCF-7 cells by scanning force microscopy.
    Leporatti S; Vergara D; Zacheo A; Vergaro V; Maruccio G; Cingolani R; Rinaldi R
    Nanotechnology; 2009 Feb; 20(5):055103. PubMed ID: 19417334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical characterization of living and dead undifferentiated human adipose-derived stem cells by using atomic force microscopy.
    Hu K; Zhao F; Wang Q
    Proc Inst Mech Eng H; 2013 Dec; 227(12):1319-23. PubMed ID: 24044923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscoelastic Properties of Confluent MDCK II Cells Obtained from Force Cycle Experiments.
    Brückner BR; Nöding H; Janshoff A
    Biophys J; 2017 Feb; 112(4):724-735. PubMed ID: 28256232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring biological materials mechanics with atomic force microscopy - Determination of viscoelastic cell properties from stress relaxation experiments.
    Weber A; Benitez R; Toca-Herrera JL
    Microsc Res Tech; 2022 Oct; 85(10):3284-3295. PubMed ID: 35736395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel approach for extracting viscoelastic parameters of living cells through combination of inverse finite element simulation and Atomic Force Microscopy.
    Wei F; Yang H; Liu L; Li G
    Comput Methods Biomech Biomed Engin; 2017 Mar; 20(4):373-384. PubMed ID: 27627026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanorheology of living cells measured by AFM-based force-distance curves.
    Garcia PD; Guerrero CR; Garcia R
    Nanoscale; 2020 Apr; 12(16):9133-9143. PubMed ID: 32293616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of methotrexate on the viscoelastic properties of single cells probed by atomic force microscopy.
    Li M; Liu L; Xiao X; Xi N; Wang Y
    J Biol Phys; 2016 Oct; 42(4):551-569. PubMed ID: 27438703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress relaxation and creep on living cells with the atomic force microscope: a means to calculate elastic moduli and viscosities of cell components.
    Moreno-Flores S; Benitez R; Vivanco Md; Toca-Herrera JL
    Nanotechnology; 2010 Nov; 21(44):445101. PubMed ID: 20921592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing Multiscale Mechanical Properties of Brain Tissue Using Atomic Force Microscopy, Impact Indentation, and Rheometry.
    Canovic EP; Qing B; Mijailovic AS; Jagielska A; Whitfield MJ; Kelly E; Turner D; Sahin M; Van Vliet KJ
    J Vis Exp; 2016 Sep; (115):. PubMed ID: 27684097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative study of the elastic modulus of loosely attached cells in AFM indentation experiments.
    Dokukin ME; Guz NV; Sokolov I
    Biophys J; 2013 May; 104(10):2123-31. PubMed ID: 23708352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring viscoelasticity of soft samples using atomic force microscopy.
    Tripathy S; Berger EJ
    J Biomech Eng; 2009 Sep; 131(9):094507. PubMed ID: 19725704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micropipette-assisted atomic force microscopy for single-cell 3D manipulations and nanomechanical measurements.
    Feng Y; Li M
    Nanoscale; 2023 Aug; 15(32):13346-13358. PubMed ID: 37526589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Method for quantitative measurements of the elastic modulus of biological cells in AFM indentation experiments.
    Sokolov I; Dokukin ME; Guz NV
    Methods; 2013 Apr; 60(2):202-13. PubMed ID: 23639869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AFM Indentation Analysis of Cells to Study Cell Mechanics and Pericellular Coat.
    Sokolov I; Dokukin ME
    Methods Mol Biol; 2018; 1814():449-468. PubMed ID: 29956249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.