BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35175627)

  • 21. A comparison of two-electron chemistry performed by the manganese and iron heterodimer and homodimers.
    Roos K; Siegbahn PE
    J Biol Inorg Chem; 2012 Mar; 17(3):363-73. PubMed ID: 22083102
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cyanobacterial alkane biosynthesis further expands the catalytic repertoire of the ferritin-like 'di-iron-carboxylate' proteins.
    Krebs C; Bollinger JM; Booker SJ
    Curr Opin Chem Biol; 2011 Apr; 15(2):291-303. PubMed ID: 21440485
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unsaturated Long-Chain Fatty Acids Are Preferred Ferritin Ligands That Enhance Iron Biomineralization.
    Zanzoni S; Pagano K; D'Onofrio M; Assfalg M; Ciambellotti S; Bernacchioni C; Turano P; Aime S; Ragona L; Molinari H
    Chemistry; 2017 Jul; 23(41):9879-9887. PubMed ID: 28489257
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural and functional study on cysteine 495, coordinating ligand to T1Cu site in multicopper oxidase CopA.
    Tang W; Liu H; Zeng X
    Chemosphere; 2021 Oct; 281():130807. PubMed ID: 34022605
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Replacement of the proximal histidine iron ligand by a cysteine or tyrosine converts heme oxygenase to an oxidase.
    Liu Y; Moënne-Loccoz P; Hildebrand DP; Wilks A; Loehr TM; Mauk AG; Ortiz de Montellano PR
    Biochemistry; 1999 Mar; 38(12):3733-43. PubMed ID: 10090762
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and synthesis of a tetradentate '3-amine-1-carboxylate' ligand to mimic the metal binding environment at the non-heme iron(II) oxidase active site.
    Dungan VJ; Ortin Y; Mueller-Bunz H; Rutledge PJ
    Org Biomol Chem; 2010 Apr; 8(7):1666-73. PubMed ID: 20237680
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Density functional theory study of the manganese-containing ribonucleotide reductase from Chlamydia trachomatis: why manganese is needed in the active complex.
    Roos K; Siegbahn PE
    Biochemistry; 2009 Mar; 48(9):1878-87. PubMed ID: 19220003
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal use in ribonucleotide reductase R2, di-iron, di-manganese and heterodinuclear--an intricate bioinorganic workaround to use different metals for the same reaction.
    Högbom M
    Metallomics; 2011 Feb; 3(2):110-20. PubMed ID: 21267492
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solving Biology's Iron Chemistry Problem with Ferritin Protein Nanocages.
    Theil EC; Tosha T; Behera RK
    Acc Chem Res; 2016 May; 49(5):784-91. PubMed ID: 27136423
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectroscopic and computational studies of reversible O
    Fischer AA; Lindeman SV; Fiedler AT
    Dalton Trans; 2017 Oct; 46(39):13229-13241. PubMed ID: 28686274
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Substitution of manganese for iron in ribonucleotide reductase from Escherichia coli. Spectroscopic and crystallographic characterization.
    Atta M; Nordlund P; Aberg A; Eklund H; Fontecave M
    J Biol Chem; 1992 Oct; 267(29):20682-8. PubMed ID: 1328209
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Remarkably Efficient MnFe2 O4 -based Oxidase Nanozyme.
    Vernekar AA; Das T; Ghosh S; Mugesh G
    Chem Asian J; 2016 Jan; 11(1):72-6. PubMed ID: 26377634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural and functional characterisation of multi-copper oxidase CueO from lignin-degrading bacterium Ochrobactrum sp. reveal its activity towards lignin model compounds and lignosulfonate.
    Granja-Travez RS; Wilkinson RC; Persinoti GF; Squina FM; Fülöp V; Bugg TDH
    FEBS J; 2018 May; 285(9):1684-1700. PubMed ID: 29575798
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structure of reduced protein R2 of ribonucleotide reductase: the structural basis for oxygen activation at a dinuclear iron site.
    Logan DT; Su XD; Aberg A; Regnström K; Hajdu J; Eklund H; Nordlund P
    Structure; 1996 Sep; 4(9):1053-64. PubMed ID: 8805591
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High catalytic activity achieved with a mixed manganese-iron site in protein R2 of Chlamydia ribonucleotide reductase.
    Voevodskaya N; Lendzian F; Ehrenberg A; Gräslund A
    FEBS Lett; 2007 Jul; 581(18):3351-5. PubMed ID: 17601579
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Active Site Metal Occupancy and Cyclic Di-GMP Phosphodiesterase Activity of Thermotoga maritima HD-GYP.
    Miner KD; Kurtz DM
    Biochemistry; 2016 Feb; 55(6):970-9. PubMed ID: 26786892
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectroscopic studies of single and double variants of M ferritin: lack of conversion of a biferrous substrate site into a cofactor site for O2 activation.
    Kwak Y; Schwartz JK; Haldar S; Behera RK; Tosha T; Theil EC; Solomon EI
    Biochemistry; 2014 Jan; 53(3):473-82. PubMed ID: 24397299
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metal binding and activity of ribonucleotide reductase protein R2 mutants: conditions for formation of the mixed manganese-iron cofactor.
    Popović-Bijelić A; Voevodskaya N; Domkin V; Thelander L; Gräslund A
    Biochemistry; 2009 Jul; 48(27):6532-9. PubMed ID: 19492792
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High resolution crystal structures of the catalytic domain of human phenylalanine hydroxylase in its catalytically active Fe(II) form and binary complex with tetrahydrobiopterin.
    Andersen OA; Flatmark T; Hough E
    J Mol Biol; 2001 Nov; 314(2):279-91. PubMed ID: 11718561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Site-directed mutagenesis and spectroscopic studies of the iron-binding site of (S)-2-hydroxypropylphosphonic acid epoxidase.
    Yan F; Li T; Lipscomb JD; Liu A; Liu HW
    Arch Biochem Biophys; 2005 Oct; 442(1):82-91. PubMed ID: 16150418
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.