These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35175919)

  • 1. Spatiotemporal Coherence to Quantify Sources of Image Degradation in Ultrasonic Imaging.
    Vienneau EP; Ozgun KA; Byram BC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1337-1352. PubMed ID: 35175919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incoherent Clutter Suppression Using Lag-One Coherence.
    Long W; Bottenus N; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Aug; 67(8):1544-1557. PubMed ID: 32142428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coherence-based quantification of acoustic clutter sources in medical ultrasound.
    Long J; Long W; Bottenus N; Trahey G
    J Acoust Soc Am; 2020 Aug; 148(2):1051. PubMed ID: 32873040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clutter filtering of angular domain data for contrast-free ultrafast microvascular imaging.
    Jiang L; Chu H; Yu J; Su X; Liu J; Wu H; Wang F; Zong Y; Wan M
    Phys Med Biol; 2023 Dec; 69(1):. PubMed ID: 38041871
    [No Abstract]   [Full Text] [Related]  

  • 5. A Spatial Coherence Beamformer Design for Power Doppler Imaging.
    Ozgun K; Tierney J; Byram B
    IEEE Trans Med Imaging; 2020 May; 39(5):1558-1570. PubMed ID: 31725374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lag-One Coherence as a Metric for Ultrasonic Image Quality.
    Long W; Bottenus N; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Oct; 65(10):1768-1780. PubMed ID: 30010556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harmonic spatial coherence imaging: an ultrasonic imaging method based on backscatter coherence.
    Dahl J; Jakovljevic M; Pinton GF; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):648-59. PubMed ID: 22547276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Converting Coherence to Signal-to-noise Ratio for Enhancement of Adaptive Ultrasound Imaging.
    Hasegawa H; Nagaoka R
    Ultrason Imaging; 2020 Jan; 42(1):27-40. PubMed ID: 31802696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lesion detectability in diagnostic ultrasound with short-lag spatial coherence imaging.
    Dahl JJ; Hyun D; Lediju M; Trahey GE
    Ultrason Imaging; 2011 Apr; 33(2):119-33. PubMed ID: 21710827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of in vivo cardiac photoacoustic signal specificity using spatiotemporal singular value decomposition.
    Al Mukaddim R; Weichmann AM; Mitchell CC; Varghese T
    J Biomed Opt; 2021 Apr; 26(4):. PubMed ID: 33876591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasound Ultrafast Power Doppler Imaging with High Signal-to-Noise Ratio by Temporal Multiply-and-Sum (TMAS) Autocorrelation.
    Shen CC; Guo FT
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo application of short-lag spatial coherence and harmonic spatial coherence imaging in fetal ultrasound.
    Kakkad V; Dahl J; Ellestad S; Trahey G
    Ultrason Imaging; 2015 Apr; 37(2):101-16. PubMed ID: 25116292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iterative Model-Based Beamforming for High Dynamic Range Applications.
    Schlunk S; Dei K; Byram B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Mar; 68(3):482-493. PubMed ID: 32746227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic reciprocity of spatial coherence in ultrasound imaging.
    Bottenus N; Üstüner KF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 May; 62(5):852-61. PubMed ID: 25965679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust Short-Lag Spatial Coherence Imaging.
    Nair AA; Tran TD; Bell MAL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Mar; 65(3):366-377. PubMed ID: 29505405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-lag Spatial Coherence Ultrasound Imaging with Adaptive Synthetic Transmit Aperture Focusing.
    Zhao J; Wang Y; Yu J; Guo W; Zhang S; Aliabadi S
    Ultrason Imaging; 2017 Jul; 39(4):224-239. PubMed ID: 28068874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherent flow power Doppler (CFPD): flow detection using spatial coherence beamforming.
    Li YL; Dahl JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jun; 62(6):1022-35. PubMed ID: 26067037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occult Regions of Suppressed Coherence in Liver B-Mode Images.
    Offerdahl K; Huber M; Long W; Bottenus N; Nelson R; Trahey G
    Ultrasound Med Biol; 2022 Jan; 48(1):47-58. PubMed ID: 34702640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model and regularization scheme for ultrasonic beamforming clutter reduction.
    Byram B; Dei K; Tierney J; Dumont D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Nov; 62(11):1913-27. PubMed ID: 26559622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reverberation Clutter Suppression Using 2-D Spatial Coherence Analysis.
    Ahmed R; Bottenus N; Long J; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jan; 69(1):84-97. PubMed ID: 34437060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.