These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 35176294)
1. Evaluating the oxidation inhibition of sulfide in urban sewers using a novel quantitative method. Shi X; Tian J; Kang L; Ren B; Jin X; Wang XC; Jin P Chemosphere; 2022 Jun; 296():133958. PubMed ID: 35176294 [TBL] [Abstract][Full Text] [Related]
2. A biological strategy for sulfide control in sewers: Removing sulfide by sulfur-oxidizing bacteria. Yuan X; Sun Y; Ni D; Xie Z; Zhang Y; Miao S; Wu L; Xing X; Zuo J J Environ Manage; 2023 Dec; 348():119237. PubMed ID: 37832290 [TBL] [Abstract][Full Text] [Related]
3. Sulfur transformation in rising main sewers receiving nitrate dosage. Jiang G; Sharma KR; Guisasola A; Keller J; Yuan Z Water Res; 2009 Sep; 43(17):4430-40. PubMed ID: 19625067 [TBL] [Abstract][Full Text] [Related]
4. Indirect sulfur reduction via polysulfide contributes to serious odor problem in a sewer receiving nitrate dosage. Liang S; Zhang L; Jiang F Water Res; 2016 Sep; 100():421-428. PubMed ID: 27232986 [TBL] [Abstract][Full Text] [Related]
5. Time-based succession existed in rural sewer biofilms: Bacterial communities, sulfate-reducing bacteria and methanogenic archaea, and sulfide and methane generation. Zheng T; Li W; Ma Y; Liu J Sci Total Environ; 2021 Apr; 765():144397. PubMed ID: 33385817 [TBL] [Abstract][Full Text] [Related]
6. In-situ advanced oxidation of sediment iron for sulfide control in sewers. Liu Y; Zuo Z; Li H; Xing Y; Cheng D; Guo M; Liu T; Zheng M; Yuan Z; Huang X Water Res; 2023 Jul; 240():120077. PubMed ID: 37247440 [TBL] [Abstract][Full Text] [Related]
7. Different ferric dosing strategies could result in different control mechanisms of sulfide and methane production in sediments of gravity sewers. Cao J; Zhang L; Hong J; Sun J; Jiang F Water Res; 2019 Nov; 164():114914. PubMed ID: 31400595 [TBL] [Abstract][Full Text] [Related]
8. Kinetics and stoichiometry of aerobic sulfide oxidation in wastewater from sewers-effects of pH and temperature. Nielsen AH; Vollertsen J; Hvitved-Jacobsen T Water Environ Res; 2006 Mar; 78(3):275-83. PubMed ID: 16629268 [TBL] [Abstract][Full Text] [Related]
9. Enhancing sulfide mitigation via the sustainable supply of oxygen from air-nanobubbles in gravity sewers. Zhang Z; Chang N; Wang S; Lu J; Li K; Zheng C Sci Total Environ; 2022 Feb; 808():152203. PubMed ID: 34890666 [TBL] [Abstract][Full Text] [Related]
10. Effects of tire wear particles with and without photoaging on anaerobic biofilm sulfide production in sewers and related mechanisms. Li K; Yu J; Chen X; Kong D; Peng Y; Xiu X; Su H; Yan L Chemosphere; 2022 Dec; 308(Pt 1):136185. PubMed ID: 36030941 [TBL] [Abstract][Full Text] [Related]
11. Methane emission from sewers. Liu Y; Ni BJ; Sharma KR; Yuan Z Sci Total Environ; 2015 Aug; 524-525():40-51. PubMed ID: 25889543 [TBL] [Abstract][Full Text] [Related]
12. Effect of variation of liquid condition on transformation of sulfur and carbon in the sediment of sanitary sewer. Liu Y; Wu C; Zhou X; Zhang T; Mu L; Shi H J Environ Manage; 2015 May; 154():65-9. PubMed ID: 25706408 [TBL] [Abstract][Full Text] [Related]
13. Sulfur-containing substances in sewers: Transformation, transportation, and remediation. Li Y; He Y; Guo H; Hou J; Dai S; Zhang P; Tong Y; Ni BJ; Zhu T; Liu Y J Hazard Mater; 2024 Apr; 467():133618. PubMed ID: 38335612 [TBL] [Abstract][Full Text] [Related]
14. Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge. Sun J; Pikaar I; Sharma KR; Keller J; Yuan Z Water Res; 2015 Mar; 71():150-9. PubMed ID: 25616115 [TBL] [Abstract][Full Text] [Related]
15. Anoxic sulfide oxidation in wastewater of sewer networks. Yang W; Vollertsen J; Hvitved-Jacobsen T Water Sci Technol; 2005; 52(3):191-9. PubMed ID: 16206859 [TBL] [Abstract][Full Text] [Related]
16. Identification of controlling factors for the initiation of corrosion of fresh concrete sewers. Jiang G; Sun X; Keller J; Bond PL Water Res; 2015 Sep; 80():30-40. PubMed ID: 25992907 [TBL] [Abstract][Full Text] [Related]
17. Online oxygen control for sulfide oxidation in anaerobic treatment of high-sulfate wastewater. Khanal SK; Huang JC Water Environ Res; 2006 Apr; 78(4):397-408. PubMed ID: 16749308 [TBL] [Abstract][Full Text] [Related]
18. Impact of reduced water consumption on sulfide and methane production in rising main sewers. Sun J; Hu S; Sharma KR; Bustamante H; Yuan Z J Environ Manage; 2015 May; 154():307-15. PubMed ID: 25748598 [TBL] [Abstract][Full Text] [Related]
19. Rapid dynamic quantification of sulfide generation flux in spatially heterogeneous sediments of gravity sewers. Zuo Z; Ren D; Qiao L; Li H; Huang X; Liu Y Water Res; 2021 Sep; 203():117494. PubMed ID: 34412021 [TBL] [Abstract][Full Text] [Related]
20. Experimental and modeling investigations on the unexpected hydrogen sulfide rebound in a sewer receiving nitrate addition: Mechanism and solution. Liang Z; Wu D; Li G; Sun J; Jiang F; Li Y J Environ Sci (China); 2023 Mar; 125():630-640. PubMed ID: 36375945 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]