These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 35176307)
21. Effect of conductive polymers coated anode on the performance of microbial fuel cells (MFCs) and its biodiversity analysis. Li C; Zhang L; Ding L; Ren H; Cui H Biosens Bioelectron; 2011 Jun; 26(10):4169-76. PubMed ID: 21549585 [TBL] [Abstract][Full Text] [Related]
22. Polyaniline/mesoporous tungsten trioxide composite as anode electrocatalyst for high-performance microbial fuel cells. Wang Y; Li B; Zeng L; Cui D; Xiang X; Li W Biosens Bioelectron; 2013 Mar; 41():582-8. PubMed ID: 23079340 [TBL] [Abstract][Full Text] [Related]
23. Vanadium nitride decorated carbon cloth anode promotes aniline degradation and electricity generation of MFCs by efficiently enriching electroactive bacteria and promoting extracellular electron transfer. Zou J; Chang Q; Guo C; Yan M J Environ Manage; 2023 Nov; 346():119048. PubMed ID: 37742561 [TBL] [Abstract][Full Text] [Related]
24. Using live algae at the anode of a microbial fuel cell to generate electricity. Xu C; Poon K; Choi MM; Wang R Environ Sci Pollut Res Int; 2015 Oct; 22(20):15621-35. PubMed ID: 26018284 [TBL] [Abstract][Full Text] [Related]
25. Bimetallic oxide MnFe Xue P; Jiang S; Li W; Shi K; Ma L; Li P Bioprocess Biosyst Eng; 2021 Jun; 44(6):1119-1130. PubMed ID: 33555380 [TBL] [Abstract][Full Text] [Related]
26. Performance evaluation of treating oil-containing restaurant wastewater in microbial fuel cell using Li Z; Yang S; Song Y; Xu H; Wang Z; Wang W; Zhao Y Environ Technol; 2020 Jan; 41(4):420-429. PubMed ID: 30015569 [TBL] [Abstract][Full Text] [Related]
27. Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells. Yong YC; Dong XC; Chan-Park MB; Song H; Chen P ACS Nano; 2012 Mar; 6(3):2394-400. PubMed ID: 22360743 [TBL] [Abstract][Full Text] [Related]
28. Improved Simultaneous Decolorization and Power Generation in a Microbial Fuel Cell with the Sponge Anode Modified by Polyaniline and Chitosan. Xu H; Wang L; Lin C; Zheng J; Wen Q; Chen Y; Wang Y; Qi L Appl Biochem Biotechnol; 2020 Oct; 192(2):698-718. PubMed ID: 32515002 [TBL] [Abstract][Full Text] [Related]
29. Performance evaluation of poly(aniline-co-pyrrole) wrapped titanium dioxide nanocomposite as an air-cathode catalyst material for microbial fuel cell. Pattanayak P; Papiya F; Kumar V; Singh A; Kundu PP Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111492. PubMed ID: 33255059 [TBL] [Abstract][Full Text] [Related]
30. Effects of cathode/anode electron accumulation on soil microbial fuel cell power generation and heavy metal removal. Zhang J; Sun Y; Zhang H; Cao X; Wang H; Li X Environ Res; 2021 Jul; 198():111217. PubMed ID: 33974843 [TBL] [Abstract][Full Text] [Related]
31. Long term testing of Microbial Fuel Cells: Comparison of different anode materials. Hidalgo D; Tommasi T; Velayutham K; Ruggeri B Bioresour Technol; 2016 Nov; 219():37-44. PubMed ID: 27475329 [TBL] [Abstract][Full Text] [Related]
32. MnCo Tahir K; Miran W; Jang J; Maile N; Shahzad A; Moztahida M; Ghani AA; Kim B; Lee DS Chemosphere; 2021 Feb; 265():129098. PubMed ID: 33272661 [TBL] [Abstract][Full Text] [Related]
33. Hydroxylated and aminated polyaniline nanowire networks for improving anode performance in microbial fuel cells. Zhao Y; Nakanishi S; Watanabe K; Hashimoto K J Biosci Bioeng; 2011 Jul; 112(1):63-6. PubMed ID: 21498110 [TBL] [Abstract][Full Text] [Related]
34. Polyaniline-Derived Nitrogen-Containing Carbon Nanostructures with Different Morphologies as Anode Modifier in Microbial Fuel Cells. Lascu I; Locovei C; Bradu C; Gheorghiu C; Tanase AM; Dumitru A Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232531 [TBL] [Abstract][Full Text] [Related]
35. Preparation of PANI-SA/CF anode to enhance the remediation and power generation capabilities of plant microbial fuel cells for chromium contaminated soil. Fan L; Feng W Bioprocess Biosyst Eng; 2024 Apr; 47(4):509-518. PubMed ID: 38492005 [TBL] [Abstract][Full Text] [Related]
36. Polyaniline/Carbon Nanotubes Composite Modified Anode via Graft Polymerization and Self-Assembling for Microbial Fuel Cells. Wu W; Niu H; Yang D; Wang S; Jiang N; Wang J; Lin J; Hu C Polymers (Basel); 2018 Jul; 10(7):. PubMed ID: 30960684 [TBL] [Abstract][Full Text] [Related]
37. Improving the power generation of microbial fuel cells by modifying the anode with single-wall carbon nanohorns. Yang J; Cheng S; Sun Y; Li C Biotechnol Lett; 2017 Oct; 39(10):1515-1520. PubMed ID: 28664313 [TBL] [Abstract][Full Text] [Related]
38. Improving the performance of biotrickling filter microbial fuel cells in treating exhaust gas by adjusting the oxygen content of the anode tank. Liu SH; Tsai SL; Lai YR; Lin CW; Huang YW Chemosphere; 2021 Sep; 278():130390. PubMed ID: 33819893 [TBL] [Abstract][Full Text] [Related]
39. Effect of β-cyclodextrin/polydopamine composite modified anode on the performance of microbial fuel cell. Fan L; Xi Y Bioprocess Biosyst Eng; 2022 May; 45(5):855-864. PubMed ID: 35230555 [TBL] [Abstract][Full Text] [Related]
40. Nickel oxide/carbon nanotube/polyaniline nanocomposite as bifunctional anode catalyst for high-performance Shewanella-based dual-chamber microbial fuel cell. Nourbakhsh F; Mohsennia M; Pazouki M Bioprocess Biosyst Eng; 2017 Nov; 40(11):1669-1677. PubMed ID: 28766022 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]