BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35176369)

  • 1. Potential sensing of toxic chemical warfare agents (CWAs) by twisted nanographenes: A first principle approach.
    Sattar N; Sajid H; Tabassum S; Ayub K; Mahmood T; Gilani MA
    Sci Total Environ; 2022 Jun; 824():153858. PubMed ID: 35176369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective adsorption of A-series chemical warfare agents on graphdiyne nanoflake: a DFT study.
    Sajid H; Khan S; Ayub K; Mahmood T
    J Mol Model; 2021 Apr; 27(4):117. PubMed ID: 33796926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adductomics: a promising tool for the verification of chemical warfare agents' exposures in biological samples.
    Golime R; Chandra B; Palit M; Dubey DK
    Arch Toxicol; 2019 Jun; 93(6):1473-1484. PubMed ID: 30923868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.
    Urabe T; Takahashi K; Kitagawa M; Sato T; Kondo T; Enomoto S; Kidera M; Seto Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 120():437-44. PubMed ID: 24211802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deciphering the electrochemical sensing capability of novel Ga
    Javed M; Khan MU; Hussain R; Ahmed S; Ahamad T
    RSC Adv; 2023 Sep; 13(41):28885-28903. PubMed ID: 37790104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High sensitivity of graphdiyne nanoflake toward detection of phosgene, thiophosgene and phosogenoxime; a first-principles study.
    Khan S; Sajid H; Ayub K; Mahmood T
    J Mol Graph Model; 2020 Nov; 100():107658. PubMed ID: 32712553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalent Triazine Framework C
    Hammud HH; Yar M; Bayach I; Ayub K
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36986015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent probes for the detection of chemical warfare agents.
    Meng WQ; Sedgwick AC; Kwon N; Sun M; Xiao K; He XP; Anslyn EV; James TD; Yoon J
    Chem Soc Rev; 2023 Jan; 52(2):601-662. PubMed ID: 36149439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Detection of Nerve Agents through Carbon Nitride Quantum Dots: A DFT Approach.
    Al-Faiyz YSS; Sarfaraz S; Yar M; Munsif S; Khan AA; Amin B; Sheikh NS; Ayub K
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in fluorescent and colorimetric chemosensors for the detection of chemical warfare agents: a legacy of the 21st century.
    Kumar V; Kim H; Pandey B; James TD; Yoon J; Anslyn EV
    Chem Soc Rev; 2023 Jan; 52(2):663-704. PubMed ID: 36546880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impregnation on activated carbon for removal of chemical warfare agents (CWAs) and radioactive content.
    Kiani SS; Farooq A; Ahmad M; Irfan N; Nawaz M; Irshad MA
    Environ Sci Pollut Res Int; 2021 Nov; 28(43):60477-60494. PubMed ID: 34545527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supramolecular chemistry and chemical warfare agents: from fundamentals of recognition to catalysis and sensing.
    Sambrook MR; Notman S
    Chem Soc Rev; 2013 Dec; 42(24):9251-67. PubMed ID: 24048279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromo-fluorogenic sensors for chemical warfare agents in real-time analysis: journey towards accurate detection and differentiation.
    Kumar V
    Chem Commun (Camb); 2021 Apr; 57(28):3430-3444. PubMed ID: 33725077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of chemical warfare agents based on cholinergic array type meta-predictors.
    Kumar S; Kumari C; Ahn S; Kim H; Kim MH
    Sci Rep; 2022 Oct; 12(1):16709. PubMed ID: 36203081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hollow fiber-mediated liquid-phase microextraction of chemical warfare agents from water.
    Dubey DK; Pardasani D; Gupta AK; Palit M; Kanaujia PK; Tak V
    J Chromatogr A; 2006 Feb; 1107(1-2):29-35. PubMed ID: 16427062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of breakthrough volumes of volatile chemical warfare agents on a poly(2,6-diphenylphenylene oxide)-based adsorbent and application to thermal desorption-gas chromatography/mass spectrometric analysis.
    Kanamori-Kataoka M; Seto Y
    J Chromatogr A; 2015 Sep; 1410():19-27. PubMed ID: 26239699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A molecular recognition platform for the simultaneous sensing of diverse chemical weapons.
    Zeng L; Chen T; Zhu B; Koo S; Tang Y; Lin W; James TD; Kim JS
    Chem Sci; 2022 Apr; 13(16):4523-4532. PubMed ID: 35656136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PBT screening profile of chemical warfare agents (CWAs).
    Sanderson H; Fauser P; Thomsen M; Sørensen PB
    J Hazard Mater; 2007 Sep; 148(1-2):210-5. PubMed ID: 17374446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in Noble-Metal Nanoparticle-Based Fluorescence Detection of Organophosphorus Chemical Warfare Agents.
    Numan A; Singh PS; Alam A; Khalid M; Li L; Singh S
    ACS Omega; 2022 Aug; 7(31):27079-27089. PubMed ID: 35967060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Molecular Markers and Analytical Methods Documenting the Occurrence of Mustard Gas and Arsenical Warfare Agents in Soil.
    Sassolini A; Brinchi G; Di Gennaro A; Dionisi S; Dominici C; Fantozzi L; Onofri G; Piazza R; Guidotti M
    Bull Environ Contam Toxicol; 2016 Sep; 97(3):432-8. PubMed ID: 27385368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.