BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35176369)

  • 21. Investigating the potential of monocyclic B
    Niamat Y; Yaqoob J; Khan MU; Hussain R; Gilani MA; Hassan AU; Ahamad T
    J Mol Model; 2024 Jul; 30(8):245. PubMed ID: 38960925
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Robust and facile detection of formaldehyde through transition metals doped olympicene sensors: a step forward DFT investigation.
    Aetizaz M; Ullah F; Sarfaraz S; Mahmood T; Ayub K
    RSC Adv; 2023 Oct; 13(42):29231-29241. PubMed ID: 37809028
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using cheminformatics to find simulants for chemical warfare agents.
    Lavoie J; Srinivasan S; Nagarajan R
    J Hazard Mater; 2011 Oct; 194():85-91. PubMed ID: 21872989
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-dimensional photonic crystal optical gas sensor for trace detection and ultrafast response of chemical warfare agent in atmospheric humidity.
    Wang Y; Wang Z; Gao Y; Yan J; Chen Y; Yang L
    Talanta; 2024 Jun; 277():126383. PubMed ID: 38852345
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrafine Silver Nanoparticle Encapsulated Porous Molecular Traps for Discriminative Photoelectrochemical Detection of Mustard Gas Simulants by Synergistic Size-Exclusion and Site-Specific Recognition.
    Wang C; Wang Y; Kirlikovali KO; Ma K; Zhou Y; Li P; Farha OK
    Adv Mater; 2022 Sep; 34(35):e2202287. PubMed ID: 35790037
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent Advances in the Development of Chromophore-Based Chemosensors for Nerve Agents and Phosgene.
    Chen L; Wu D; Yoon J
    ACS Sens; 2018 Jan; 3(1):27-43. PubMed ID: 29231710
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Supramolecular Sensing of Chemical Warfare Agents.
    Butera E; Zammataro A; Pappalardo A; Trusso Sfrazzetto G
    Chempluschem; 2021 Apr; 86(4):681-695. PubMed ID: 33881227
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemical warfare agent detection: a review of current trends and future perspective.
    Pacsial-Ong EJ; Aguilar ZP
    Front Biosci (Schol Ed); 2013 Jan; 5(2):516-43. PubMed ID: 23277066
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface-immobilization of molecules for detection of chemical warfare agents.
    Bhowmick I; Neelam
    Analyst; 2014 Sep; 139(17):4154-68. PubMed ID: 24998209
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Blocking chemical warfare agent simulants by graphene oxide/polymer multilayer membrane based on hydrogen bonding and size sieving effect.
    Kim Y; Choi M; Heo J; Jung S; Ka D; Lee H; Kang SW; Jung H; Lee S; Jin Y; Hong J
    J Hazard Mater; 2022 Apr; 427():127884. PubMed ID: 34863570
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fast and Selective Detection of Trace Chemical Warfare Agents Enabled by an ESIPT-Based Fluorescent Film Sensor.
    Liu K; Qin M; Shi Q; Wang G; Zhang J; Ding N; Xi H; Liu T; Kong J; Fang Y
    Anal Chem; 2022 Aug; 94(32):11151-11158. PubMed ID: 35921590
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Chemical warfare agent poisoning].
    Wille T; Steinritz D; Worek F; Thiermann H
    Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz; 2019 Nov; 62(11):1370-1377. PubMed ID: 31602511
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Analytical and on-site detection methods for chemical warfare agents].
    Seto Y
    Yakugaku Zasshi; 2006 Dec; 126(12):1279-99. PubMed ID: 17139154
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acute aquatic toxicity of arsenic-based chemical warfare agents to Daphnia magna.
    Czub M; Nawała J; Popiel S; Brzeziński T; Maszczyk P; Sanderson H; Maser E; Gordon D; Dziedzic D; Dawidziuk B; Pijanowska J; Fabisiak J; Szubska M; Lang T; Vanninen P; Niemikoski H; Missiaen T; Lehtonen KK; Bełdowski J; Kotwicki L
    Aquat Toxicol; 2021 Jan; 230():105693. PubMed ID: 33310671
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Agile Detection of Chemical Warfare Agents by Machine Vision: a Supramolecular Approach.
    Tuccitto N; Catania G; Pappalardo A; Trusso Sfrazzetto G
    Chemistry; 2021 Oct; 27(55):13715-13718. PubMed ID: 34414611
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous detection and identification of precursors, degradation and co-products of chemical warfare agents in drinking water by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry.
    Tak V; Purohit A; Pardasani D; Goud DR; Jain R; Dubey DK
    J Chromatogr A; 2014 Nov; 1370():80-92. PubMed ID: 25454132
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of chemical warfare agents and related compounds in environmental samples by solid-phase microextraction with gas chromatography.
    Popiel S; Sankowska M
    J Chromatogr A; 2011 Nov; 1218(47):8457-79. PubMed ID: 22015307
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A theoretical study of allopurinol drug sensing by carbon and boron nitride nanostructures: DFT, QTAIM, RDG, NBO and PCM insights.
    Miah MH; Hossain MR; Islam MS; Ferdous T; Ahmed F
    RSC Adv; 2021 Nov; 11(61):38457-38472. PubMed ID: 35493251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exposure status of sea-dumped chemical warfare agents in the Baltic Sea.
    Vanninen P; Östin A; Bełdowski J; Pedersen EA; Söderström M; Szubska M; Grabowski M; Siedlewicz G; Czub M; Popiel S; Nawała J; Dziedzic D; Jakacki J; Pączek B
    Mar Environ Res; 2020 Oct; 161():105112. PubMed ID: 32861968
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical warfare agent and biological toxin-induced pulmonary toxicity: could stem cells provide potential therapies?
    Angelini DJ; Dorsey RM; Willis KL; Hong C; Moyer RA; Oyler J; Jensen NS; Salem H
    Inhal Toxicol; 2013 Jan; 25(1):37-62. PubMed ID: 23293972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.