These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 35176385)

  • 21. [Application of "omics" in bioremediation--a review].
    Lv Y; Tian Y; Zheng T
    Wei Sheng Wu Xue Bao; 2011 May; 51(5):579-85. PubMed ID: 21800618
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biofilm formation in xenobiotic-degrading microorganisms.
    Bhatt P; Bhatt K; Huang Y; Li J; Wu S; Chen S
    Crit Rev Biotechnol; 2023 Dec; 43(8):1129-1149. PubMed ID: 36170978
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review.
    Liu SH; Zeng GM; Niu QY; Liu Y; Zhou L; Jiang LH; Tan XF; Xu P; Zhang C; Cheng M
    Bioresour Technol; 2017 Jan; 224():25-33. PubMed ID: 27916498
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comprehensive insight into the application of white rot fungi and their lignocellulolytic enzymes in the removal of organic pollutants.
    Zhuo R; Fan F
    Sci Total Environ; 2021 Jul; 778():146132. PubMed ID: 33714829
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals.
    Edwards SJ; Kjellerup BV
    Appl Microbiol Biotechnol; 2013 Dec; 97(23):9909-21. PubMed ID: 24150788
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancement of metal bioremediation by use of microbial surfactants.
    Singh P; Cameotra SS
    Biochem Biophys Res Commun; 2004 Jun; 319(2):291-7. PubMed ID: 15178405
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of compost for effective bioremediation of organic contaminants and pollutants in soil.
    Kästner M; Miltner A
    Appl Microbiol Biotechnol; 2016 Apr; 100(8):3433-49. PubMed ID: 26921182
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancing Microbial Pollutant Degradation by Integrating Eco-Evolutionary Principles with Environmental Biotechnology.
    Borchert E; Hammerschmidt K; Hentschel U; Deines P
    Trends Microbiol; 2021 Oct; 29(10):908-918. PubMed ID: 33812769
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioremediation: a genuine technology to remediate radionuclides from the environment.
    Prakash D; Gabani P; Chandel AK; Ronen Z; Singh OV
    Microb Biotechnol; 2013 Jul; 6(4):349-60. PubMed ID: 23617701
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of Stenotrophomonas acidaminiphila NCW-702 biofilm for implication in the degradation of polycyclic aromatic hydrocarbons.
    Mangwani N; Shukla SK; Kumari S; Rao TS; Das S
    J Appl Microbiol; 2014 Oct; 117(4):1012-24. PubMed ID: 25040365
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Uptake, transformation and degradation of organic pollutants in transgenic plants].
    Hu GZ; Wang YF; He YK
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Aug; 31(4):340-6. PubMed ID: 16121003
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure.
    Molin S; Tolker-Nielsen T
    Curr Opin Biotechnol; 2003 Jun; 14(3):255-61. PubMed ID: 12849777
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Endophytic microorganisms--promising applications in bioremediation of greenhouse gases.
    Stępniewska Z; Kuźniar A
    Appl Microbiol Biotechnol; 2013 Nov; 97(22):9589-96. PubMed ID: 24048641
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular perspectives and recent advances in microbial remediation of persistent organic pollutants.
    Chakraborty J; Das S
    Environ Sci Pollut Res Int; 2016 Sep; 23(17):16883-903. PubMed ID: 27234838
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Significance of microbial genome in environmental remediation.
    Kugarajah V; Nisha KN; Jayakumar R; Sahabudeen S; Ramakrishnan P; Mohamed SB
    Microbiol Res; 2023 Jun; 271():127360. PubMed ID: 36931127
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanobioremediation: A sustainable approach for the removal of toxic pollutants from the environment.
    Bhatt P; Pandey SC; Joshi S; Chaudhary P; Pathak VM; Huang Y; Wu X; Zhou Z; Chen S
    J Hazard Mater; 2022 Apr; 427():128033. PubMed ID: 34999406
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The evolution of quorum sensing in bacterial biofilms.
    Nadell CD; Xavier JB; Levin SA; Foster KR
    PLoS Biol; 2008 Jan; 6(1):e14. PubMed ID: 18232735
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Persistence, environmental hazards, and mitigation of pharmaceutically active residual contaminants from water matrices.
    González-González RB; Sharma P; Singh SP; Américo-Pinheiro JHP; Parra-Saldívar R; Bilal M; Iqbal HMN
    Sci Total Environ; 2022 May; 821():153329. PubMed ID: 35093347
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polymeric pollutant biodegradation through microbial oxidoreductase: A better strategy to safe environment.
    Khatoon N; Jamal A; Ali MI
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):9-16. PubMed ID: 28648638
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Research progress on the application of quorum sensing in the colonization and degradation enhancement of bioaugmentation functional bacteria].
    Wang YJ; Si YM; Li YJ
    Ying Yong Sheng Tai Xue Bao; 2022 Oct; 33(10):2871-2880. PubMed ID: 36384625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.