These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 3517671)
21. Comparison of the pharmacological characteristics of 5 HT1 and 5 HT2 binding sites with those of serotonin autoreceptors which modulate serotonin release. Martin LL; Sanders-Bush E Naunyn Schmiedebergs Arch Pharmacol; 1982 Dec; 321(3):165-70. PubMed ID: 7155196 [TBL] [Abstract][Full Text] [Related]
22. Evidence for presynaptic location of inhibitory 5-HT1D beta-like autoreceptors in the guinea-pig brain cortex. Bühlen M; Fink K; Böing C; Göthert M Naunyn Schmiedebergs Arch Pharmacol; 1996 Feb; 353(3):281-9. PubMed ID: 8692282 [TBL] [Abstract][Full Text] [Related]
23. The serotonin autoreceptor: antagonism by quipazine. Martin LL; Sanders-Bush E Neuropharmacology; 1982 May; 21(5):445-50. PubMed ID: 6981071 [TBL] [Abstract][Full Text] [Related]
24. The effect of selective type A or type B monoamine oxidase inhibition on the intrasynaptosomal deamination of (3H)serotonin in rat spinal cord tissue. Azzaro AJ; Amedro JB; Brown LM; Smith DJ; Williams GM Naunyn Schmiedebergs Arch Pharmacol; 1988 Jul; 338(1):9-13. PubMed ID: 2467212 [TBL] [Abstract][Full Text] [Related]
25. Nalbuphine: an autoradiographic opioid receptor binding profile in the central nervous system of an agonist/antagonist analgesic. De Souza EB; Schmidt WK; Kuhar MJ J Pharmacol Exp Ther; 1988 Jan; 244(1):391-402. PubMed ID: 2826773 [TBL] [Abstract][Full Text] [Related]
26. Presynaptic serotonin receptors and alpha-adrenoceptors on central serotoninergic and noradrenergic neurons of normotensive and spontaneously hypertensive rats. Schlicker E; Classen K; Göthert M J Cardiovasc Pharmacol; 1988 May; 11(5):518-28. PubMed ID: 2455837 [TBL] [Abstract][Full Text] [Related]
27. Direct stimulatory effect of calcitonin on [3H]5-hydroxytryptamine release from the rat spinal cord. Bourgoin S; Pohl M; Hirsch M; Mauborgne A; Cesselin F; Hamon M Eur J Pharmacol; 1988 Oct; 156(1):13-23. PubMed ID: 2463177 [TBL] [Abstract][Full Text] [Related]
28. Intracerebroventricular morphine produces antinociception by evoking gamma-aminobutyric acid release through activation of 5-hydroxytryptamine 3 receptors in the spinal cord. Kawamata T; Omote K; Toriyabe M; Kawamata M; Namiki A Anesthesiology; 2002 May; 96(5):1175-82. PubMed ID: 11981159 [TBL] [Abstract][Full Text] [Related]
29. Serotonin and the mammalian circadian system: I. In vitro phase shifts by serotonergic agonists and antagonists. Prosser RA; Dean RR; Edgar DM; Heller HC; Miller JD J Biol Rhythms; 1993; 8(1):1-16. PubMed ID: 8490207 [TBL] [Abstract][Full Text] [Related]
30. Citalopram antagonizes the stimulation by lysergic acid diethylamide of presynaptic inhibitory serotonin autoreceptors in the rat hypothalamus. Langer SZ; Moret C J Pharmacol Exp Ther; 1982 Jul; 222(1):220-6. PubMed ID: 6953233 [TBL] [Abstract][Full Text] [Related]
31. Multiple opiate receptors: [3H]ethylketocyclazocine receptor binding and ketocyclazocine analgesia. Pasternak GW Proc Natl Acad Sci U S A; 1980 Jun; 77(6):3691-4. PubMed ID: 6251477 [TBL] [Abstract][Full Text] [Related]
32. Further evidence for the possible relationship between neuropeptides and serotonergic neurones in rat spinal cord. Tsai HY Jpn J Pharmacol; 1984 Jun; 35(2):117-21. PubMed ID: 6205198 [TBL] [Abstract][Full Text] [Related]
33. Further evidence for possible analgesic mechanism of electroacupuncture: effects on neuropeptides and serotonergic neurons in rat spinal cord. Tsai HY; Lin JG; Inoki R Jpn J Pharmacol; 1989 Feb; 49(2):181-5. PubMed ID: 2471859 [TBL] [Abstract][Full Text] [Related]
34. Mechanisms of orphenadrine-induced antinociception in mice: a role for serotonergic pathways. Hunskaar S; Rosland JH; Hole K Eur J Pharmacol; 1989 Jan; 160(1):83-91. PubMed ID: 2469592 [TBL] [Abstract][Full Text] [Related]
35. Ethanol stimulates [3H]5-HT high-affinity uptake by rat forebrain synaptosomes: role of 5-HT receptors and voltage channel blockers. Alexi T; Azmitia EC Brain Res; 1991 Mar; 544(2):243-7. PubMed ID: 1645610 [TBL] [Abstract][Full Text] [Related]
36. 8-Hydroxy-2-(di-n-propylamino) tetralin is devoid of activity at the 5-hydroxytryptamine autoreceptor in rat brain. Implications for the proposed link between the autoreceptor and the [3H] 5-HT recognition site. Middlemiss DN Naunyn Schmiedebergs Arch Pharmacol; 1984 Aug; 327(1):18-22. PubMed ID: 6238235 [TBL] [Abstract][Full Text] [Related]
37. The effect of trifluoperazine and R 24 571 on the K+-evoked release of 5-hydroxytryptamine from superfused synaptosomes. Leung MT; Collard KJ Neuropharmacology; 1983 Sep; 22(9):1095-9. PubMed ID: 6633821 [TBL] [Abstract][Full Text] [Related]
38. Systemic paracetamol-induced analgesic and antihyperalgesic effects through activation of descending serotonergic pathways involving spinal 5-HT₇ receptors. Dogrul A; Seyrek M; Akgul EO; Cayci T; Kahraman S; Bolay H Eur J Pharmacol; 2012 Feb; 677(1-3):93-101. PubMed ID: 22206817 [TBL] [Abstract][Full Text] [Related]
39. Comparison of mu, delta, and kappa opiate binding sites in rat brain and spinal cord. Mack KJ; Killian A; Weyhenmeyer JA Life Sci; 1984 Jan; 34(3):281-5. PubMed ID: 6319937 [TBL] [Abstract][Full Text] [Related]
40. 5-HT1B receptors modulate release of [3H]dopamine from rat striatal synaptosomes: further evidence using 5-HT moduline, polyclonal 5-HT1B receptor antibodies and 5-HT1B receptor knock-out mice. Sarhan H; Grimaldi B; Hen R; Fillion G Naunyn Schmiedebergs Arch Pharmacol; 2000 Jan; 361(1):12-8. PubMed ID: 10651141 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]