These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35177719)

  • 1. Distance-based clustering using QUBO formulations.
    Matsumoto N; Hamakawa Y; Tatsumura K; Kudo K
    Sci Rep; 2022 Feb; 12(1):2669. PubMed ID: 35177719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ferroelectric compute-in-memory annealer for combinatorial optimization problems.
    Yin X; Qian Y; Vardar A; Günther M; Müller F; Laleni N; Zhao Z; Jiang Z; Shi Z; Shi Y; Gong X; Zhuo C; Kämpfe T; Ni K
    Nat Commun; 2024 Mar; 15(1):2419. PubMed ID: 38499524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Proof-of-Concept Numerical Ising Machine for Neural Spike Localization.
    Donoghue K; Toreyin H
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38083117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QUBO formulations for training machine learning models.
    Date P; Arthur D; Pusey-Nazzaro L
    Sci Rep; 2021 May; 11(1):10029. PubMed ID: 33976283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binary matrix factorization on special purpose hardware.
    Malik OA; Ushijima-Mwesigwa H; Roy A; Mandal A; Ghosh I
    PLoS One; 2021; 16(12):e0261250. PubMed ID: 34914786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quadratic unconstrained binary optimization formulation for rectified-linear-unit-type functions.
    Sato G; Konoshima M; Ohwa T; Tamura H; Ohkubo J
    Phys Rev E; 2019 Apr; 99(4-1):042106. PubMed ID: 31108602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel real number representations in Ising machines and performance evaluation: Combinatorial random number sum and constant division.
    Endo K; Matsuda Y; Tanaka S; Muramatsu M
    PLoS One; 2024; 19(6):e0304594. PubMed ID: 38870161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combinatorial optimization by simulating adiabatic bifurcations in nonlinear Hamiltonian systems.
    Goto H; Tatsumura K; Dixon AR
    Sci Adv; 2019 Apr; 5(4):eaav2372. PubMed ID: 31016238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bifurcation behaviors shape how continuous physical dynamics solves discrete Ising optimization.
    Wang J; Ebler D; Wong KYM; Hui DSW; Sun J
    Nat Commun; 2023 May; 14(1):2510. PubMed ID: 37130854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A QUBO Formulation of Minimum Multicut Problem Instances in Trees for D-Wave Quantum Annealers.
    Cruz-Santos W; Venegas-Andraca SE; Lanzagorta M
    Sci Rep; 2019 Nov; 9(1):17216. PubMed ID: 31748576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General spatial photonic Ising machine based on the interaction matrix eigendecomposition method.
    Wang S; Zhang W; Ye X; He Z
    Appl Opt; 2024 Apr; 63(11):2973-2980. PubMed ID: 38856396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of QUBO solver using black-box optimization to structural design for resonance avoidance.
    Matsumori T; Taki M; Kadowaki T
    Sci Rep; 2022 Jul; 12(1):12143. PubMed ID: 35840649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MEMS Oscillators-Network-Based Ising Machine with Grouping Method.
    Deng Y; Zhang Y; Zhang X; Jiang Y; Chen X; Yang Y; Tong X; Cai Y; Liu W; Sun C; Shang D; Wang Q; Yu H; Wang Z
    Adv Sci (Weinh); 2024 Jul; 11(26):e2310096. PubMed ID: 38696663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient optimization with higher-order ising machines.
    Bybee C; Kleyko D; Nikonov DE; Khosrowshahi A; Olshausen BA; Sommer FT
    Nat Commun; 2023 Sep; 14(1):6033. PubMed ID: 37758716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum computing for several AGV scheduling models.
    Tang L; Yang C; Wen K; Wu W; Guo Y
    Sci Rep; 2024 May; 14(1):12205. PubMed ID: 38806557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward a QUBO-Based Density Matrix Electronic Structure Method.
    Negre CFA; Lopez-Bezanilla A; Zhang Y; Akrobotu PD; Mniszewski SM; Tretiak S; Dub PA
    J Chem Theory Comput; 2022 Jul; 18(7):4177-4185. PubMed ID: 35658437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization with photonic wave-based annealers.
    Prabhakar A; Shah P; Gautham U; Natarajan V; Ramesh V; Chandrachoodan N; Tayur S
    Philos Trans A Math Phys Eng Sci; 2023 Jan; 381(2241):20210409. PubMed ID: 36463927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Power flow analysis using quantum and digital annealers: a discrete combinatorial optimization approach.
    Kaseb Z; Möller M; Vergara PP; Palensky P
    Sci Rep; 2024 Oct; 14(1):23216. PubMed ID: 39369083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On good encodings for quantum annealer and digital optimization solvers.
    Ceselli A; Premoli M
    Sci Rep; 2023 Apr; 13(1):5628. PubMed ID: 37024525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mean field approximation for solving QUBO problems.
    Veszeli MT; Vattay G
    PLoS One; 2022; 17(8):e0273709. PubMed ID: 36041120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.