BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 35177796)

  • 1. TAQing2.0 for genome reorganization of asexual industrial yeasts by direct protein transfection.
    Yasukawa T; Oda AH; Nakamura T; Masuo N; Tamura M; Yamasaki Y; Imura M; Yamada T; Ohta K
    Commun Biol; 2022 Feb; 5(1):144. PubMed ID: 35177796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extended TAQing system for large-scale plant genome reorganization.
    Tanaka H; Muramoto N; Sugimoto H; Oda AH; Ohta K
    Plant J; 2020 Sep; 103(6):2139-2150. PubMed ID: 32579240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenotypic diversification by enhanced genome restructuring after induction of multiple DNA double-strand breaks.
    Muramoto N; Oda A; Tanaka H; Nakamura T; Kugou K; Suda K; Kobayashi A; Yoneda S; Ikeuchi A; Sugimoto H; Kondo S; Ohto C; Shibata T; Mitsukawa N; Ohta K
    Nat Commun; 2018 May; 9(1):1995. PubMed ID: 29777105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(dA.dT) sequences exist as rigid DNA structures in nucleosome-free yeast promoters in vivo.
    Suter B; Schnappauf G; Thoma F
    Nucleic Acids Res; 2000 Nov; 28(21):4083-9. PubMed ID: 11058103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosomal Rearrangements of Synthetic Yeast by SCRaMbLE.
    Luo Z; Jiang S; Dai J
    Methods Mol Biol; 2021; 2196():153-165. PubMed ID: 32889719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-dimensional and large-scale phenotyping of yeast mutants.
    Ohya Y; Sese J; Yukawa M; Sano F; Nakatani Y; Saito TL; Saka A; Fukuda T; Ishihara S; Oka S; Suzuki G; Watanabe M; Hirata A; Ohtani M; Sawai H; Fraysse N; Latgé JP; François JM; Aebi M; Tanaka S; Muramatsu S; Araki H; Sonoike K; Nogami S; Morishita S
    Proc Natl Acad Sci U S A; 2005 Dec; 102(52):19015-20. PubMed ID: 16365294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene mapping methodology powered by induced genome rearrangements.
    Yone H; Kono H; Hirai H; Ohta K
    Sci Rep; 2022 Oct; 12(1):16658. PubMed ID: 36198847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multipurpose transposon insertion libraries for large-scale analysis of gene function in yeast.
    Kumar A
    Methods Mol Biol; 2008; 416():117-29. PubMed ID: 18392964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential gene retention as an evolutionary mechanism to generate biodiversity and adaptation in yeasts.
    Morel G; Sterck L; Swennen D; Marcet-Houben M; Onesime D; Levasseur A; Jacques N; Mallet S; Couloux A; Labadie K; Amselem J; Beckerich JM; Henrissat B; Van de Peer Y; Wincker P; Souciet JL; Gabaldón T; Tinsley CR; Casaregola S
    Sci Rep; 2015 Jun; 5():11571. PubMed ID: 26108467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of the trehalase activation response and the regulatory trehalase gene among yeast species.
    Soto T; Fernández J; Cansado J; Vicente J; Gacto M
    Microbiologia; 1997 Dec; 13(4):481-8. PubMed ID: 9608522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selfishness in moderation: evolutionary success of the yeast plasmid.
    Velmurugan S; Mehta S; Jayaram M
    Curr Top Dev Biol; 2003; 56():1-24. PubMed ID: 14584724
    [No Abstract]   [Full Text] [Related]  

  • 12. Nutritional genomics in yeast models.
    Liu Y; Sturley SL
    Nutrition; 2004 Jan; 20(1):166-72. PubMed ID: 14698032
    [No Abstract]   [Full Text] [Related]  

  • 13. Genome organization of mitochondrial DNA from the non-saccharomycete yeast Arxula adeninivorans LS3.
    Pich U; Kunze G
    Curr Genet; 1992 Dec; 22(6):505-6. PubMed ID: 1473183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of yeast strains containing genetically marked transposons.
    Roeder GS; Fink GR
    Fed Proc; 1982 Aug; 41(10):2653-5. PubMed ID: 6286365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome sequence of the lager brewing yeast, an interspecies hybrid.
    Nakao Y; Kanamori T; Itoh T; Kodama Y; Rainieri S; Nakamura N; Shimonaga T; Hattori M; Ashikari T
    DNA Res; 2009 Apr; 16(2):115-29. PubMed ID: 19261625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging technologies in yeast genomics.
    Kumar A; Snyder M
    Nat Rev Genet; 2001 Apr; 2(4):302-12. PubMed ID: 11283702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus
    Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast cell biology: the wave of the present. Yeast Cell Biology sponsored by the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA, August 15-20, 1989.
    Pringle JR
    New Biol; 1990 Jan; 2(1):37-43. PubMed ID: 1981842
    [No Abstract]   [Full Text] [Related]  

  • 19. The 26S proteasome negatively regulates the level of overall genomic nucleotide excision repair.
    Lommel L; Chen L; Madura K; Sweder K
    Nucleic Acids Res; 2000 Dec; 28(24):4839-45. PubMed ID: 11121474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome dynamics and evolution in yeasts: A long-term yeast-bacteria competition experiment.
    Zhou N; Katz M; Knecht W; Compagno C; Piškur J
    PLoS One; 2018; 13(4):e0194911. PubMed ID: 29624585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.