These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 35177832)

  • 1. Comparative transcriptome and weighted correlation network analyses reveal candidate genes involved in chlorogenic acid biosynthesis in sweet potato.
    Xu J; Zhu J; Lin Y; Zhu H; Tang L; Wang X; Wang X
    Sci Rep; 2022 Feb; 12(1):2770. PubMed ID: 35177832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated transcriptome, small RNA and degradome sequencing approaches proffer insights into chlorogenic acid biosynthesis in leafy sweet potato.
    Liu Y; Su W; Wang L; Lei J; Chai S; Zhang W; Yang X
    PLoS One; 2021; 16(1):e0245266. PubMed ID: 33481815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome Analysis Reveals the Mechanism Underlying the Production of a High Quantity of Chlorogenic Acid in Young Leaves of Lonicera macranthoides Hand.-Mazz.
    Chen Z; Tang N; You Y; Lan J; Liu Y; Li Z
    PLoS One; 2015; 10(9):e0137212. PubMed ID: 26381882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of full-length transcriptomes based on hybrid population reveals regulatory mechanisms of anthocyanin biosynthesis in sweet potato (Ipomoea batatas (L.) Lam).
    Qin Z; Hou F; Li A; Dong S; Huang C; Wang Q; Zhang L
    BMC Plant Biol; 2020 Jun; 20(1):299. PubMed ID: 32600332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-Seq and iTRAQ reveal multiple pathways involved in storage root formation and development in sweet potato (Ipomoea batatas L.).
    Dong T; Zhu M; Yu J; Han R; Tang C; Xu T; Liu J; Li Z
    BMC Plant Biol; 2019 Apr; 19(1):136. PubMed ID: 30971210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional genomics by integrated analysis of transcriptome of sweet potato (Ipomoea batatas (L.) Lam.) during root formation.
    Kim S; Nie H; Jun B; Kim J; Lee J; Kim S; Kim E; Kim S
    Genes Genomics; 2020 May; 42(5):581-596. PubMed ID: 32240514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Transcriptome Analysis Reveals the Transcriptional Alterations in Growth- and Development-Related Genes in Sweet Potato Plants Infected and Non-Infected by SPFMV, SPV2, and SPVG.
    Shi J; Zhao L; Yan B; Zhu Y; Ma H; Chen W; Ruan S
    Int J Mol Sci; 2019 Feb; 20(5):. PubMed ID: 30813603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated transcriptomic and CGAs analysis revealed IbGLK1 is a key transcription factor for chlorogenic acid accumulation in sweetpotato (Ipomoea batatas [L.] Lam.) blades.
    Luo Q; Chen P; Zong J; Gao J; Qin R; Wu C; Lv Q; Xu Y; Zhao T; Fu Y
    Int J Biol Macromol; 2024 May; 266(Pt 1):131045. PubMed ID: 38547942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LncRNA-mediated ceRNA regulatory network provides new insight into chlorogenic acid synthesis in sweet potato.
    Peng Y; Pan R; Liu Y; Medison MB; Shalmani A; Yang X; Zhang W
    Physiol Plant; 2022 Nov; 174(6):e13826. PubMed ID: 36377281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome Analysis Reveals Genes and Pathways Associated with Drought Tolerance of Early Stages in Sweet Potato (
    Cheng P; Kong F; Han Y; Liu X; Xia J
    Genes (Basel); 2024 Jul; 15(7):. PubMed ID: 39062727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis).
    Li CF; Zhu Y; Yu Y; Zhao QY; Wang SJ; Wang XC; Yao MZ; Luo D; Li X; Chen L; Yang YJ
    BMC Genomics; 2015 Jul; 16(1):560. PubMed ID: 26220550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Starch content differences between two sweet potato accessions are associated with specific changes in gene expression.
    Yang S; Liu X; Qiao S; Tan W; Li M; Feng J; Zhang C; Kang X; Huang T; Zhu Y; Yang L; Wang D
    Funct Integr Genomics; 2018 Nov; 18(6):613-625. PubMed ID: 29754269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of
    Medison MB; Pan R; Peng Y; Medison RG; Shalmani A; Yang X; Zhang W
    Physiol Mol Biol Plants; 2023 Mar; 29(3):361-376. PubMed ID: 37033766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA-sequencing analysis revealed genes associated drought stress responses of different durations in hexaploid sweet potato.
    Arisha MH; Ahmad MQ; Tang W; Liu Y; Yan H; Kou M; Wang X; Zhang Y; Li Q
    Sci Rep; 2020 Jul; 10(1):12573. PubMed ID: 32724138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and regulation of chlorogenic acid in potato: Rerouting phenylpropanoid flux in HQT-silenced lines.
    Payyavula RS; Shakya R; Sengoda VG; Munyaneza JE; Swamy P; Navarre DA
    Plant Biotechnol J; 2015 May; 13(4):551-64. PubMed ID: 25421386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide identification, characterisation and expression profile analysis of DEAD-box family genes in sweet potato wild ancestor Ipomoea trifida under abiotic stresses.
    Wan R; Liu J; Yang Z; Zhu P; Cao Q; Xu T
    Genes Genomics; 2020 Mar; 42(3):325-335. PubMed ID: 31894476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Changes in Metabolite Accumulation and the Transcriptome during Leaf Growth and Development in
    Li L; Liu M; Shi K; Yu Z; Zhou Y; Fan R; Shi Q
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31426587
    [No Abstract]   [Full Text] [Related]  

  • 18. De novo sequencing and a comprehensive analysis of purple sweet potato (Impomoea batatas L.) transcriptome.
    Xie F; Burklew CE; Yang Y; Liu M; Xiao P; Zhang B; Qiu D
    Planta; 2012 Jul; 236(1):101-13. PubMed ID: 22270559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome and metabolome analyses reveal chlorogenic acid accumulation in pigmented potatoes at different altitudes.
    Dong QJ; Xu XY; Fan CX; Xiao JP
    Genomics; 2024 Jun; 116(5):110883. PubMed ID: 38857813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic network biomarker analysis discovers IbNAC083 in the initiation and regulation of sweet potato root tuberization.
    He S; Wang H; Hao X; Wu Y; Bian X; Yin M; Zhang Y; Fan W; Dai H; Yuan L; Zhang P; Chen L
    Plant J; 2021 Nov; 108(3):793-813. PubMed ID: 34460981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.