These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 35177837)

  • 1. Programming cell-free biosensors with DNA strand displacement circuits.
    Jung JK; Archuleta CM; Alam KK; Lucks JB
    Nat Chem Biol; 2022 Apr; 18(4):385-393. PubMed ID: 35177837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering a cell-free biosensor signal amplification circuit with polymerase strand recycling.
    Li Y; Lucci T; Dujovne MV; Jung JK; Capdevila DA; Lucks JB
    bioRxiv; 2024 Apr; ():. PubMed ID: 38712145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of RNA and RNA:DNA Hybrid Strand Displacement.
    Liu H; Hong F; Smith F; Goertz J; Ouldridge T; Stevens MM; Yan H; Šulc P
    ACS Synth Biol; 2021 Nov; 10(11):3066-3073. PubMed ID: 34752075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperative Toehold: A Mechanism To Activate DNA Strand Displacement and Construct Biosensors.
    Hu P; Li M; Wei X; Yang B; Li Y; Li CY; Du J
    Anal Chem; 2018 Aug; 90(16):9751-9760. PubMed ID: 30040891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional Clip Strand for the Regulation of DNA Strand Displacement and Construction of Complex DNA Nanodevices.
    Liu L; Hu Q; Zhang W; Li W; Zhang W; Ming Z; Li L; Chen N; Wang H; Xiao X
    ACS Nano; 2021 Jul; 15(7):11573-11584. PubMed ID: 34213302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design Approaches to Expand the Toolkit for Building Cotranscriptionally Encoded RNA Strand Displacement Circuits.
    Schaffter SW; Wintenberg ME; Murphy TM; Strychalski EA
    ACS Synth Biol; 2023 May; 12(5):1546-1561. PubMed ID: 37134273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programmable DNA Nanoindicator-Based Platform for Large-Scale Square Root Logic Biocomputing.
    Zhou C; Geng H; Wang P; Guo C
    Small; 2019 Dec; 15(49):e1903489. PubMed ID: 31661189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleic acid strand displacement - from DNA nanotechnology to translational regulation.
    Simmel FC
    RNA Biol; 2023 Jan; 20(1):154-163. PubMed ID: 37095744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programmable, Multiplexed DNA Circuits Supporting Clinically Relevant, Electrochemical Antibody Detection.
    Bracaglia S; Ranallo S; Plaxco KW; Ricci F
    ACS Sens; 2021 Jun; 6(6):2442-2448. PubMed ID: 34129321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toehold clipping: A mechanism for remote control of DNA strand displacement.
    Faheem H; Mathivanan J; Talbot H; Zeghal H; Vangaveti S; Sheng J; Chen AA; Chandrasekaran AR
    Nucleic Acids Res; 2023 May; 51(8):4055-4063. PubMed ID: 36477864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Series or parallel toehold-mediated strand displacement and its application in circular RNA detection and logic gates.
    Bai S; Xu B; Wu J; Xie G
    Biosens Bioelectron; 2023 Dec; 241():115677. PubMed ID: 37696219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cotranscriptionally encoded RNA strand displacement circuits.
    Schaffter SW; Strychalski EA
    Sci Adv; 2022 Mar; 8(12):eabl4354. PubMed ID: 35319994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Digital Sensing and Molecular Computation by an Enzyme-Free DNA Circuit.
    Arter WE; Yusim Y; Peter Q; Taylor CG; Klenerman D; Keyser UF; Knowles TPJ
    ACS Nano; 2020 May; 14(5):5763-5771. PubMed ID: 32293175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational design of allosterically regulated toehold mediated strand displacement circuits for sensitive and on-site detection of small molecule metabolites.
    Lin H; Rodríguez-Serrano AF; Hsing IM
    Analyst; 2021 Nov; 146(23):7144-7151. PubMed ID: 34734587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Latent Toehold-Mediated DNA Circuits Based on a Bulge-Loop Structure for Leakage Reduction and Its Application to Signal-Amplifying DNA Logic Gates.
    Sugawara T; Oishi M
    ACS Appl Mater Interfaces; 2024 Apr; 16(13):15907-15915. PubMed ID: 38508218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erasable and Field Programmable DNA Circuits Based on Configurable Logic Blocks.
    Liu Y; Zhai Y; Hu H; Liao Y; Liu H; Liu X; He J; Wang L; Wang H; Li L; Zhou X; Xiao X
    Adv Sci (Weinh); 2024 Jul; 11(26):e2400011. PubMed ID: 38698560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the Performance of DNA Strand Displacement Circuits by Shadow Cancellation.
    Song T; Gopalkrishnan N; Eshra A; Garg S; Mokhtar R; Bui H; Chandran H; Reif J
    ACS Nano; 2018 Nov; 12(11):11689-11697. PubMed ID: 30372034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speed and Correctness Guarantees for Programmable Enthalpy-Neutral DNA Reactions†.
    Wang B; Thachuk C; Soloveichik D
    ACS Synth Biol; 2023 Apr; 12(4):993-1006. PubMed ID: 37014808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooperative Branch Migration: A Mechanism for Flexible Control of DNA Strand Displacement.
    Weng Z; Yu H; Luo W; Guo Y; Liu Q; Zhang L; Zhang Z; Wang T; Dai L; Zhou X; Han X; Wang L; Li J; Yang Y; Xie G
    ACS Nano; 2022 Feb; 16(2):3135-3144. PubMed ID: 35113525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Programmable RNA-based systems for sensing and diagnostic applications.
    Rossetti M; Del Grosso E; Ranallo S; Mariottini D; Idili A; Bertucci A; Porchetta A
    Anal Bioanal Chem; 2019 Jul; 411(19):4293-4302. PubMed ID: 30734852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.