BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 35178443)

  • 1. Aldehyde Dehydrogenase 2 Family Member (ALDH2) Is a Therapeutic Index for Oxaliplatin Response on Colorectal Cancer Therapy with Dysfunction p53.
    Wang WL; Batzorig U; Hung CS; Wei PL; Huang CY; Chang YJ
    Biomed Res Int; 2022; 2022():1322788. PubMed ID: 35178443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TGM2, HMGA2, FXYD3, and LGALS4 genes as biomarkers in acquired oxaliplatin resistance of human colorectal cancer: A systems biology approach.
    Cheraghi-Shavi T; Jalal R; Minuchehr Z
    PLoS One; 2023; 18(8):e0289535. PubMed ID: 37535601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico analysis to identify miR-1271-5p/PLCB4 (phospholipase C Beta 4) axis mediated oxaliplatin resistance in metastatic colorectal cancer.
    Lee CC; Lee AW; Wei PL; Liu YS; Chang YJ; Huang CY
    Sci Rep; 2023 Mar; 13(1):4366. PubMed ID: 36927770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AKR1B10, a transcriptional target of p53, is downregulated in colorectal cancers associated with poor prognosis.
    Ohashi T; Idogawa M; Sasaki Y; Suzuki H; Tokino T
    Mol Cancer Res; 2013 Dec; 11(12):1554-63. PubMed ID: 24140838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Novel miRNAs, Targeting Genes, Signaling Pathway, and the Small Molecule for Overcoming Oxaliplatin Resistance of Metastatic Colorectal Cancer.
    Misbah M; Kumar M; Lee KH; Shen SC
    Biomed Res Int; 2022; 2022():3825760. PubMed ID: 36193307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of key genes for predicting colorectal cancer prognosis by integrated bioinformatics analysis.
    Dai GP; Wang LP; Wen YQ; Ren XQ; Zuo SG
    Oncol Lett; 2020 Jan; 19(1):388-398. PubMed ID: 31897151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of novel biomarkers and small molecule drugs in human colorectal cancer by microarray and bioinformatics analysis.
    Chen J; Wang Z; Shen X; Cui X; Guo Y
    Mol Genet Genomic Med; 2019 Jul; 7(7):e00713. PubMed ID: 31087508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying the key genes and microRNAs in colorectal cancer liver metastasis by bioinformatics analysis and in vitro experiments.
    Zhang T; Guo J; Gu J; Wang Z; Wang G; Li H; Wang J
    Oncol Rep; 2019 Jan; 41(1):279-291. PubMed ID: 30542696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delineating the underlying molecular mechanisms and key genes involved in metastasis of colorectal cancer via bioinformatics analysis.
    Qi C; Chen Y; Zhou Y; Huang X; Li G; Zeng J; Ruan Z; Xie X; Zhang J
    Oncol Rep; 2018 May; 39(5):2297-2305. PubMed ID: 29517105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of key genes in colorectal cancer using random walk with restart.
    Cui X; Shen K; Xie Z; Liu T; Zhang H
    Mol Med Rep; 2017 Feb; 15(2):867-872. PubMed ID: 28000901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of novel target genes and pathways involved in bevacizumab-resistant colorectal cancer.
    Makondi PT; Lee CH; Huang CY; Chu CM; Chang YJ; Wei PL
    PLoS One; 2018; 13(1):e0189582. PubMed ID: 29342159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opposing roles of the aldo-keto reductases AKR1B1 and AKR1B10 in colorectal cancer.
    Taskoparan B; Seza EG; Demirkol S; Tuncer S; Stefek M; Gure AO; Banerjee S
    Cell Oncol (Dordr); 2017 Dec; 40(6):563-578. PubMed ID: 28929377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of potential biomarkers with colorectal cancer based on bioinformatics analysis and machine learning.
    Hammad A; Elshaer M; Tang X
    Math Biosci Eng; 2021 Oct; 18(6):8997-9015. PubMed ID: 34814332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Employing bioinformatics analysis to identify hub genes and microRNAs involved in colorectal cancer.
    Ebadfardzadeh J; Kazemi M; Aghazadeh A; Rezaei M; Shirvaliloo M; Sheervalilou R
    Med Oncol; 2021 Aug; 38(9):114. PubMed ID: 34390411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated analysis of RNA-binding proteins in human colorectal cancer.
    Fan X; Liu L; Shi Y; Guo F; Wang H; Zhao X; Zhong D; Li G
    World J Surg Oncol; 2020 Aug; 18(1):222. PubMed ID: 32828126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of candidate biomarkers and therapeutic drugs of colorectal cancer by integrated bioinformatics analysis.
    Zheng Z; Xie J; Xiong L; Gao M; Qin L; Dai C; Liang Z; Wang Y; Xue J; Wang Q; Wang W; Li X
    Med Oncol; 2020 Oct; 37(11):104. PubMed ID: 33078282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The identification of a common different gene expression signature in patients with colorectal cancer.
    Zhao ZW; Fan XX; Yang LL; Song JJ; Fang SJ; Tu JF; Chen MJ; Zheng LY; Wu FZ; Zhang DK; Ying XH; Ji JS
    Math Biosci Eng; 2019 Apr; 16(4):2942-2958. PubMed ID: 31137244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CDK1 and CDC20 overexpression in patients with colorectal cancer are associated with poor prognosis: evidence from integrated bioinformatics analysis.
    Li J; Wang Y; Wang X; Yang Q
    World J Surg Oncol; 2020 Mar; 18(1):50. PubMed ID: 32127012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. β-Sitosterol Reverses Multidrug Resistance via BCRP Suppression by Inhibiting the p53-MDM2 Interaction in Colorectal Cancer.
    Wang Z; Zhan Y; Xu J; Wang Y; Sun M; Chen J; Liang T; Wu L; Xu K
    J Agric Food Chem; 2020 Mar; 68(12):3850-3858. PubMed ID: 32167760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening of hub genes and pathways in colorectal cancer with microarray technology.
    Wang Y; Zheng T
    Pathol Oncol Res; 2014 Jul; 20(3):611-8. PubMed ID: 24504536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.