BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35179029)

  • 41. Biofabrication of three-dimensional cellular structures based on gelatin methacrylate-alginate interpenetrating network hydrogel.
    Krishnamoorthy S; Zhang Z; Xu C
    J Biomater Appl; 2019 Mar; 33(8):1105-1117. PubMed ID: 30636494
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 3D Bioprinting of Complex, Cell-laden Alginate Constructs.
    Tabriz AG; Cornelissen DJ; Shu W
    Methods Mol Biol; 2021; 2147():143-148. PubMed ID: 32840817
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hybrid microscaffold-based 3D bioprinting of multi-cellular constructs with high compressive strength: A new biofabrication strategy.
    Tan YJ; Tan X; Yeong WY; Tor SB
    Sci Rep; 2016 Dec; 6():39140. PubMed ID: 27966623
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Impact of Cell Loading of Recombinant Spider Silk Based Bioinks on Gelation and Printability.
    Lechner A; Trossmann VT; Scheibel T
    Macromol Biosci; 2022 Mar; 22(3):e2100390. PubMed ID: 34882980
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques.
    Askari M; Afzali Naniz M; Kouhi M; Saberi A; Zolfagharian A; Bodaghi M
    Biomater Sci; 2021 Feb; 9(3):535-573. PubMed ID: 33185203
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Generating adipose stem cell-laden hyaluronic acid-based scaffolds using 3D bioprinting via the double crosslinked strategy for chondrogenesis.
    Nedunchezian S; Banerjee P; Lee CY; Lee SS; Lin CW; Wu CW; Wu SC; Chang JK; Wang CK
    Mater Sci Eng C Mater Biol Appl; 2021 May; 124():112072. PubMed ID: 33947564
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink.
    Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C
    J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties.
    Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN
    Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Combinations of photoinitiator and UV absorber for cell-based digital light processing (DLP) bioprinting.
    Huh J; Moon YW; Park J; Atala A; Yoo JJ; Lee SJ
    Biofabrication; 2021 May; 13(3):. PubMed ID: 33930877
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gradient Poly(ethylene glycol) Diacrylate and Cellulose Nanocrystals Tissue Engineering Composite Scaffolds via Extrusion Bioprinting.
    Frost BA; Sutliff BP; Thayer P; Bortner MJ; Foster EJ
    Front Bioeng Biotechnol; 2019; 7():280. PubMed ID: 31681754
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 3D bioprinting of a stem cell-laden, multi-material tubular composite: An approach for spinal cord repair.
    Hamid OA; Eltaher HM; Sottile V; Yang J
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111707. PubMed ID: 33545866
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bioprintable tough hydrogels for tissue engineering applications.
    Dorishetty P; Dutta NK; Choudhury NR
    Adv Colloid Interface Sci; 2020 Jul; 281():102163. PubMed ID: 32388202
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks.
    Xie M; Yu K; Sun Y; Shao L; Nie J; Gao Q; Qiu J; Fu J; Chen Z; He Y
    J Vis Exp; 2019 Dec; (154):. PubMed ID: 31904016
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bioink properties before, during and after 3D bioprinting.
    Hölzl K; Lin S; Tytgat L; Van Vlierberghe S; Gu L; Ovsianikov A
    Biofabrication; 2016 Sep; 8(3):032002. PubMed ID: 27658612
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fabrication of a Highly Aligned Neural Scaffold via a Table Top Stereolithography 3D Printing and Electrospinning.
    Lee SJ; Nowicki M; Harris B; Zhang LG
    Tissue Eng Part A; 2017 Jun; 23(11-12):491-502. PubMed ID: 27998214
    [TBL] [Abstract][Full Text] [Related]  

  • 56. From Thermogelling Hydrogels toward Functional Bioinks: Controlled Modification and Cytocompatible Crosslinking.
    Hahn L; Beudert M; Gutmann M; Keßler L; Stahlhut P; Fischer L; Karakaya E; Lorson T; Thievessen I; Detsch R; Lühmann T; Luxenhofer R
    Macromol Biosci; 2021 Oct; 21(10):e2100122. PubMed ID: 34292657
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bisulfite-initiated crosslinking of gelatin methacryloyl hydrogels for embedded 3D bioprinting.
    Bilici Ç; Tatar AG; Şentürk E; Dikyol C; Koç B
    Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35062010
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink.
    Garcia-Cruz MR; Postma A; Frith JE; Meagher L
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix.
    Shin YJ; Shafranek RT; Tsui JH; Walcott J; Nelson A; Kim DH
    Acta Biomater; 2021 Jan; 119():75-88. PubMed ID: 33166713
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Photopolymerizable Resins for 3D-Printing Solid-Cured Tissue Engineered Implants.
    Guerra AJ; Lara-Padilla H; Becker ML; Rodriguez CA; Dean D
    Curr Drug Targets; 2019; 20(8):823-838. PubMed ID: 30648506
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.